GSTDTAP

浏览/检索结果: 共25条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Transparent ferroelectric crystals with ultrahigh piezoelectricity 期刊论文
NATURE, 2020, 577 (7790) : 350-+
作者:  Qiu, Chaorui;  Wang, Bo;  Zhang, Nan;  Zhang, Shujun;  Liu, Jinfeng;  Walker, David;  Wang, Yu;  Tian, Hao;  Shrout, Thomas R.;  Xu, Zhuo;  Chen, Long-Qing;  Li, Fei
收藏  |  浏览/下载:43/0  |  提交时间:2020/07/03

Transparent piezoelectrics are highly desirable for numerous hybrid ultrasound-optical devices ranging from photoacoustic imaging transducers to transparent actuators for haptic applications(1-7). However, it is challenging to achieve high piezoelectricity and perfect transparency simultaneously because most high-performance piezoelectrics are ferroelectrics that contain high-density light-scattering domain walls. Here, through a combination of phase-field simulations and experiments, we demonstrate a relatively simple method of using an alternating-current electric field to engineer the domain structures of originally opaque rhombohedral Pb(Mg1/3Nb2/3)O-3-PbTiO3 (PMN-PT) crystals to simultaneously generate near-perfect transparency, an ultrahigh piezoelectric coefficient d(33) (greater than 2,100 picocoulombs per newton), an excellent electromechanical coupling factor k(33) (about 94 per cent) and a large electro-optical coefficient gamma(33) (approximately 220 picometres per volt), which is far beyond the performance of the commonly used transparent ferroelectric crystal LiNbO3. We find that increasing the domain size leads to a higher d(33) value for the [001]-oriented rhombohedral PMN-PT crystals, challenging the conventional wisdom that decreasing the domain size always results in higher piezoelectricity(8-10). This work presents a paradigm for achieving high transparency and piezoelectricity by ferroelectric domain engineering, and we expect the transparent ferroelectric crystals reported here to provide a route to a wide range of hybrid device applications, such as medical imaging, self-energy-harvesting touch screens and invisible robotic devices.


  
Molecular tuning of CO2-to-ethylene conversion 期刊论文
NATURE, 2020, 577 (7791) : 509-+
作者:  Li, Fengwang;  39;Brien, Colin P.
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

The electrocatalytic reduction of carbon dioxide, powered by renewable electricity, to produce valuable fuels and feedstocks provides a sustainable and carbon-neutral approach to the storage of energy produced by intermittent renewable sources(1). However, the highly selective generation of economically desirable products such as ethylene from the carbon dioxide reduction reaction (CO2RR) remains a challenge(2). Tuning the stabilities of intermediates to favour a desired reaction pathway can improve selectivity(3-5), and this has recently been explored for the reaction on copper by controlling morphology(6), grain boundaries(7), facets(8), oxidation state(9) and dopants(10). Unfortunately, the Faradaic efficiency for ethylene is still low in neutral media (60 per cent at a partial current density of 7 milliamperes per square centimetre in the best catalyst reported so far(9)), resulting in a low energy efficiency. Here we present a molecular tuning strategy-the functionalization of the surface of electrocatalysts with organic molecules-that stabilizes intermediates for more selective CO2RR to ethylene. Using electrochemical, operando/in situ spectroscopic and computational studies, we investigate the influence of a library of molecules, derived by electro-dimerization of arylpyridiniums(11), adsorbed on copper. We find that the adhered molecules improve the stabilization of an '  atop-bound'  CO intermediate (that is, an intermediate bound to a single copper atom), thereby favouring further reduction to ethylene. As a result of this strategy, we report the CO2RR to ethylene with a Faradaic efficiency of 72 per cent at a partial current density of 230 milliamperes per square centimetre in a liquid-electrolyte flow cell in a neutral medium. We report stable ethylene electrosynthesis for 190 hours in a system based on a membrane-electrode assembly that provides a full-cell energy efficiency of 20 per cent. We anticipate that this may be generalized to enable molecular strategies to complement heterogeneous catalysts by stabilizing intermediates through local molecular tuning.


Electrocatalytic reduction of CO2 over copper can be made highly selective by '  tuning'  the copper surface with adsorbed organic molecules to stabilize intermediates for carbon-based fuels such as ethylene


  
Accelerated discovery of CO2 electrocatalysts using active machine learning 期刊论文
NATURE, 2020, 581 (7807) : 178-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:128/0  |  提交时间:2020/07/03

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy(1,2). Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy(3-8). Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products(9-16), and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 +/- 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction(17). Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.


  
Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme 期刊论文
NATURE, 2020, 581 (7808) : 323-+
作者:  Nikoo, Mohammad Samizadeh;  Jafari, Armin;  Perera, Nirmana;  Zhu, Minghua;  Santoruvo, Giovanni;  Matioli, Elison
收藏  |  浏览/下载:33/0  |  提交时间:2020/07/03

Triacylglycerols store metabolic energy in organisms and have industrial uses as foods and fuels. Excessive accumulation of triacylglycerols in humans causes obesity and is associated with metabolic diseases(1). Triacylglycerol synthesis is catalysed by acyl-CoA diacylglycerol acyltransferase (DGAT) enzymes(2-4), the structures and catalytic mechanisms of which remain unknown. Here we determined the structure of dimeric human DGAT1, a member of the membrane-bound O-acyltransferase (MBOAT) family, by cryo-electron microscopy at approximately 3.0 angstrom resolution. DGAT1 forms a homodimer through N-terminal segments and a hydrophobic interface, with putative active sites within the membrane region. A structure obtained with oleoyl-CoA substrate resolved at approximately 3.2 angstrom shows that the CoA moiety binds DGAT1 on the cytosolic side and the acyl group lies deep within a hydrophobic channel, positioning the acyl-CoA thioester bond near an invariant catalytic histidine residue. The reaction centre is located inside a large cavity, which opens laterally to the membrane bilayer, providing lipid access to the active site. A lipid-like density-possibly representing an acyl-acceptor molecule-is located within the reaction centre, orthogonal to acyl-CoA. Insights provided by the DGAT1 structures, together with mutagenesis and functional studies, provide the basis for a model of the catalysis of triacylglycerol synthesis by DGAT.


Cryo-electron microscopy structures and functional and mutagenesis studies provide insights into the catalysis of triacylglycerol synthesis by human acyl-CoA diacylglycerol acyltransferase at its intramembrane active site.


  
Electrical manipulation of a topological antiferromagnetic state 期刊论文
NATURE, 2020, 580 (7805) : 608-+
作者:  Chabon, Jacob J.;  Hamilton, Emily G.;  Kurtz, David M.;  Esfahani, Mohammad S.;  Moding, Everett J.;  Stehr, Henning;  Schroers-Martin, Joseph;  Nabet, Barzin Y.;  Chen, Binbin;  Chaudhuri, Aadel A.;  Liu, Chih Long;  Hui, Angela B.;  Jin, Michael C.;  Azad, Tej D.;  Almanza, Diego;  Jeon, Young-Jun;  Nesselbush, Monica C.;  Keh, Lyron Co Ting;  Bonilla, Rene F.;  Yoo, Christopher H.;  Ko, Ryan B.;  Chen, Emily L.;  Merriott, David J.;  Massion, Pierre P.;  Mansfield, Aaron S.;  Jen, Jin;  Ren, Hong Z.;  Lin, Steven H.;  Costantino, Christina L.;  Burr, Risa;  Tibshirani, Robert;  Gambhir, Sanjiv S.;  Berry, Gerald J.;  Jensen, Kristin C.;  West, Robert B.;  Neal, Joel W.;  Wakelee, Heather A.;  Loo, Billy W., Jr.;  Kunder, Christian A.;  Leung, Ann N.;  Lui, Natalie S.;  Berry, Mark F.;  Shrager, Joseph B.;  Nair, Viswam S.;  Haber, Daniel A.;  Sequist, Lecia V.;  Alizadeh, Ash A.;  Diehn, Maximilian
收藏  |  浏览/下载:59/0  |  提交时间:2020/07/03

Room-temperature electrical switching of a topological antiferromagnetic state in polycrystalline Mn3Sn thin films is demonstrated using the same protocol as that used for conventional ferromagnetic metals.


Electrical manipulation of phenomena generated by nontrivial band topology is essential for the development of next-generation technology using topological protection. A Weyl semimetal is a three-dimensional gapless system that hosts Weyl fermions as low-energy quasiparticles(1-4). It has various exotic properties, such as a large anomalous Hall effect (AHE) and chiral anomaly, which are robust owing to the topologically protected Weyl nodes(1-16). To manipulate such phenomena, a magnetic version of Weyl semimetals would be useful for controlling the locations of Weyl nodes in the Brillouin zone. Moreover, electrical manipulation of antiferromagnetic Weyl metals would facilitate the use of antiferromagnetic spintronics to realize high-density devices with ultrafast operation(17,18). However, electrical control of a Weyl metal has not yet been reported. Here we demonstrate the electrical switching of a topological antiferromagnetic state and its detection by the AHE at room temperature in a polycrystalline thin film(19) of the antiferromagnetic Weyl metal Mn3Sn9,10,12,20, which exhibits zero-field AHE. Using bilayer devices composed of Mn3Sn and nonmagnetic metals, we find that an electrical current density of about 10(10) to 10(11) amperes per square metre induces magnetic switching in the nonmagnetic metals, with a large change in Hall voltage. In addition, the current polarity along the bias field and the sign of the spin Hall angle of the nonmagnetic metals-positive for Pt (ref. (21)), close to 0 for Cu and negative for W (ref. (22))-determines the sign of the Hall voltage. Notably, the electrical switching in the antiferromagnet is achieved with the same protocol as that used for ferromagnetic metals(23,24). Our results may lead to further scientific and technological advances in topological magnetism and antiferromagnetic spintronics.


  
Loopy Levy flights enhance tracer diffusion in active suspensions 期刊论文
NATURE, 2020, 579 (7799) : 364-+
作者:  Hu, Bo;  Jin, Chengcheng;  Zeng, Xing;  Resch, Jon M.;  Jedrychowski, Mark P.;  Yang, Zongfang;  Desai, Bhavna N.;  Banks, Alexander S.;  Lowell, Bradford B.;  Mathis, Diane;  Spiegelman, Bruce M.
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03

A theoretical framework describing the hydrodynamic interactions between a passive particle and an active medium in out-of-equilibrium systems predicts long-range Levy flights for the diffusing particle driven by the density of the active component.


Brownian motion is widely used as a model of diffusion in equilibrium media throughout the physical, chemical and biological sciences. However, many real-world systems are intrinsically out of equilibrium owing to energy-dissipating active processes underlying their mechanical and dynamical features(1). The diffusion process followed by a passive tracer in prototypical active media, such as suspensions of active colloids or swimming microorganisms(2), differs considerably from Brownian motion, as revealed by a greatly enhanced diffusion coefficient(3-10) and non-Gaussian statistics of the tracer displacements(6,9,10). Although these characteristic features have been extensively observed experimentally, there is so far no comprehensive theory explaining how they emerge from the microscopic dynamics of the system. Here we develop a theoretical framework to model the hydrodynamic interactions between the tracer and the active swimmers, which shows that the tracer follows a non-Markovian coloured Poisson process that accounts for all empirical observations. The theory predicts a long-lived Levy flight regime(11) of the loopy tracer motion with a non-monotonic crossover between two different power-law exponents. The duration of this regime can be tuned by the swimmer density, suggesting that the optimal foraging strategy of swimming microorganisms might depend crucially on their density in order to exploit the Levy flights of nutrients(12). Our framework can be applied to address important theoretical questions, such as the thermodynamics of active systems(13), and practical ones, such as the interaction of swimming microorganisms with nutrients and other small particles(14) (for example, degraded plastic) and the design of artificial nanoscale machines(15).


  
Probing the core of the strong nuclear interaction 期刊论文
NATURE, 2020, 578 (7796) : 540-+
作者:  Bialas, Allison R.;  Presumey, Jessy;  Das, Abhishek;  van der Poel, Cees E.;  Lapchak, Peter H.;  Mesin, Luka;  Victora, Gabriel;  Tsokos, George C.;  Mawrin, Christian;  Herbst, Ronald;  Carroll, Michael C.
收藏  |  浏览/下载:30/0  |  提交时间:2020/07/03

High-energy electron scattering that can isolate pairs of nucleons in high-momentum configurations reveals a transition to spin-independent scalar forces at small separation distances, supporting the use of point-like nucleon models to describe dense nuclear systems.


The strong nuclear interaction between nucleons (protons and neutrons) is the effective force that holds the atomic nucleus together. This force stems from fundamental interactions between quarks and gluons (the constituents of nucleons) that are described by the equations of quantum chromodynamics. However, as these equations cannot be solved directly, nuclear interactions are described using simplified models, which are well constrained at typical inter-nucleon distances(1-5) but not at shorter distances. This limits our ability to describe high-density nuclear matter such as that in the cores of neutron stars(6). Here we use high-energy electron scattering measurements that isolate nucleon pairs in short-distance, high-momentum configurations(7-9), accessing a kinematical regime that has not been previously explored by experiments, corresponding to relative momenta between the pair above 400 megaelectronvolts per c (c, speed of light in vacuum). As the relative momentum between two nucleons increases and their separation thereby decreases, we observe a transition from a spin-dependent tensor force to a predominantly spin-independent scalar force. These results demonstrate the usefulness of using such measurements to study the nuclear interaction at short distances and also support the use of point-like nucleon models with two- and three-body effective interactions to describe nuclear systems up to densities several times higher than the central density of the nucleus.


  
In situ NMR metrology reveals reaction mechanisms in redox flow batteries 期刊论文
NATURE, 2020, 579 (7798) : 224-+
作者:  Ma, Jianfei;  You, Xin;  Sun, Shan;  Wang, Xiaoxiao;  Qin, Song;  Sui, Sen-Fang
收藏  |  浏览/下载:40/0  |  提交时间:2020/07/03

Large-scale energy storage is becoming increasingly critical to balancing renewable energy production and consumption(1). Organic redox flow batteries, made from inexpensive and sustainable redox-active materials, are promising storage technologies that are cheaper and less environmentally hazardous than vanadium-based batteries, but they have shorter lifetimes and lower energy density(2,3). Thus, fundamental insight at the molecular level is required to improve performance(4,5). Here we report two in situ nuclear magnetic resonance (NMR) methods of studying redox flow batteries, which are applied to two redox-active electrolytes: 2,6-dihydroxyanthraquinone (DHAQ) and 4,4 '  -((9,10-anthraquinone-2,6-diyl)dioxy) dibutyrate (DBEAQ). In the first method, we monitor the changes in the H-1 NMR shift of the liquid electrolyte as it flows out of the electrochemical cell. In the second method, we observe the changes that occur simultaneously in the positive and negative electrodes in the full electrochemical cell. Using the bulk magnetization changes (observed via the H-1 NMR shift of the water resonance) and the line broadening of the H-1 shifts of the quinone resonances as a function of the state of charge, we measure the potential differences of the two single-electron couples, identify and quantify the rate of electron transfer between the reduced and oxidized species, and determine the extent of electron delocalization of the unpaired spins over the radical anions. These NMR techniques enable electrolyte decomposition and battery self-discharge to be explored in real time, and show that DHAQ is decomposed electrochemically via a reaction that can be minimized by limiting the voltage used on charging. We foresee applications of these NMR methods in understanding a wide range of redox processes in flow and other electrochemical systems.


  
Power generation from ambient humidity using protein nanowires 期刊论文
NATURE, 2020, 578 (7796) : 550-+
作者:  Luong, Duy X.;  Bets, Ksenia V.;  Algozeeb, Wala Ali;  Stanford, Michael G.;  Kittrell, Carter;  Chen, Weiyin;  Salvatierra, Rodrigo V.;  Ren, Muqing;  McHugh, Emily A.;  Advincula, Paul A.;  Wang, Zhe;  Bhatt, Mahesh;  Guo, Hua;  Mancevski, Vladimir;  Shahsavari, Rouzbeh;  Yakobson, Boris I.;  Tour, James M.
收藏  |  浏览/下载:114/0  |  提交时间:2020/07/03

Harvesting energy from the environment offers the promise of clean power for self-sustained systems(1,2). Known technologies-such as solar cells, thermoelectric devices and mechanical generators-have specific environmental requirements that restrict where they can be deployed and limit their potential for continuous energy production(3-5). The ubiquity of atmospheric moisture offers an alternative. However, existing moisture-based energy-harvesting technologies can produce only intermittent, brief (shorter than 50 seconds) bursts of power in the ambient environment, owing to the lack of a sustained conversion mechanism(6-12). Here we show that thin-film devices made from nanometre-scale protein wires harvested from the microbe Geobacter sulfurreducens can generate continuous electric power in the ambient environment. The devices produce a sustained voltage of around 0.5 volts across a 7-micrometre-thick film, with a current density of around 17 microamperes per square centimetre. We find the driving force behind this energy generation to be a self-maintained moisture gradient that forms within the film when the film is exposed to the humidity that is naturally present in air. Connecting several devices linearly scales up the voltage and current to power electronics. Our results demonstrate the feasibility of a continuous energy-harvesting strategy that is less restricted by location or environmental conditions than other sustainable approaches.


A new type of energy-harvesting device, based on protein nanowires from the microbe Geobacter sulforreducens, can generate a sustained power output by producing a moisture gradient across the nanowire film using natural humidity.


  
A droplet-based electricity generator with high instantaneous power density 期刊论文
NATURE, 2020, 578 (7795) : 392-+
作者:  Dabney, Will;  Kurth-Nelson, Zeb;  Uchida, Naoshige;  Starkweather, Clara Kwon;  Hassabis, Demis;  Munos, Remi;  Botvinick, Matthew
收藏  |  浏览/下载:192/0  |  提交时间:2020/07/03

Extensive efforts have been made to harvest energy from water in the form of raindrops(1-6), river and ocean waves(7,8), tides(9) and others(10-17). However, achieving a high density of electrical power generation is challenging. Traditional hydraulic power generation mainly uses electromagnetic generators that are heavy, bulky, and become inefficient with low water supply. An alternative, the water-droplet/solid-based triboelectric nanogenerator, has so far generated peak power densities of less than one watt per square metre, owing to the limitations imposed by interfacial effects-as seen in characterizations of the charge generation and transfer that occur at solid-liquid(1-4) or liquid-liquid(5,18) interfaces. Here we develop a device to harvest energy from impinging water droplets by using an architecture that comprises a polytetrafluoroethylene film on an indium tin oxide substrate plus an aluminium electrode. We show that spreading of an impinged water droplet on the device bridges the originally disconnected components into a closed-loop electrical system, transforming the conventional interfacial effect into a bulk effect, and so enhancing the instantaneous power density by several orders of magnitude over equivalent devices that are limited by interfacial effects.


A device involving a polytetrafluoroethylene film, an indium tin oxide substrate and an aluminium electrode allows improved electricity generation from water droplets, which bridge the previously disconnected circuit components.