GSTDTAP  > 地球科学
DOI10.1038/s41586-020-2242-8
Accelerated discovery of CO2 electrocatalysts using active machine learning
Lan, Jun1; Ge, Jiwan1; Yu, Jinfang1; Shan, Sisi2; Zhou, Huan3; Fan, Shilong1; Zhang, Qi2; Shi, Xuanling2; Wang, Qisheng3; Zhang, Linqi2; Wang, Xinquan1
2020-05-01
发表期刊NATURE
ISSN0028-0836
EISSN1476-4687
出版年2020
卷号581期号:7807页码:178-+
文章类型Article
语种英语
国家Canada; Peoples R China; USA; Taiwan
英文关键词

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy(1,2). Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy(3-8). Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products(9-16), and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 +/- 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction(17). Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.


领域地球科学 ; 气候变化 ; 资源环境
收录类别SCI-E
WOS记录号WOS:000532836000028
WOS关键词ELECTROCHEMICAL REDUCTION ; CARBON-MONOXIDE ; ELECTROREDUCTION ; ETHYLENE
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/281044
专题地球科学
资源环境科学
气候变化
作者单位1.Tsinghua Univ, Beijing Adv Innovat Ctr Struct Biol, Beijing Frontier Res Ctr Biol Struct,Key Lab Prot, Collaborat Innovat Ctr Biotherapy,Minist Educ,Sch, Beijing, Peoples R China;
2.Tsinghua Univ, Beijing Adv Innovat Ctr Struct Biol, Ctr Global Hlth & Infect Dis, Comprehens AIDS Res Ctr,Sch Med, Beijing, Peoples R China;
3.Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Lan, Jun,Ge, Jiwan,Yu, Jinfang,et al. Accelerated discovery of CO2 electrocatalysts using active machine learning[J]. NATURE,2020,581(7807):178-+.
APA Lan, Jun.,Ge, Jiwan.,Yu, Jinfang.,Shan, Sisi.,Zhou, Huan.,...&Wang, Xinquan.(2020).Accelerated discovery of CO2 electrocatalysts using active machine learning.NATURE,581(7807),178-+.
MLA Lan, Jun,et al."Accelerated discovery of CO2 electrocatalysts using active machine learning".NATURE 581.7807(2020):178-+.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lan, Jun]的文章
[Ge, Jiwan]的文章
[Yu, Jinfang]的文章
百度学术
百度学术中相似的文章
[Lan, Jun]的文章
[Ge, Jiwan]的文章
[Yu, Jinfang]的文章
必应学术
必应学术中相似的文章
[Lan, Jun]的文章
[Ge, Jiwan]的文章
[Yu, Jinfang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。