GSTDTAP  > 地球科学
DOI10.1038/s41586-020-2086-2
Loopy Levy flights enhance tracer diffusion in active suspensions
Hu, Bo1,2; Jin, Chengcheng3,6; Zeng, Xing1,2; Resch, Jon M.4; Jedrychowski, Mark P.1,2; Yang, Zongfang4; Desai, Bhavna N.4; Banks, Alexander S.4; Lowell, Bradford B.4; Mathis, Diane5; Spiegelman, Bruce M.1,2
2020-02-19
发表期刊NATURE
ISSN0028-0836
EISSN1476-4687
出版年2020
卷号579期号:7799页码:364-+
文章类型Article
语种英语
国家Japan; Switzerland; England
英文关键词

A theoretical framework describing the hydrodynamic interactions between a passive particle and an active medium in out-of-equilibrium systems predicts long-range Levy flights for the diffusing particle driven by the density of the active component.


Brownian motion is widely used as a model of diffusion in equilibrium media throughout the physical, chemical and biological sciences. However, many real-world systems are intrinsically out of equilibrium owing to energy-dissipating active processes underlying their mechanical and dynamical features(1). The diffusion process followed by a passive tracer in prototypical active media, such as suspensions of active colloids or swimming microorganisms(2), differs considerably from Brownian motion, as revealed by a greatly enhanced diffusion coefficient(3-10) and non-Gaussian statistics of the tracer displacements(6,9,10). Although these characteristic features have been extensively observed experimentally, there is so far no comprehensive theory explaining how they emerge from the microscopic dynamics of the system. Here we develop a theoretical framework to model the hydrodynamic interactions between the tracer and the active swimmers, which shows that the tracer follows a non-Markovian coloured Poisson process that accounts for all empirical observations. The theory predicts a long-lived Levy flight regime(11) of the loopy tracer motion with a non-monotonic crossover between two different power-law exponents. The duration of this regime can be tuned by the swimmer density, suggesting that the optimal foraging strategy of swimming microorganisms might depend crucially on their density in order to exploit the Levy flights of nutrients(12). Our framework can be applied to address important theoretical questions, such as the thermodynamics of active systems(13), and practical ones, such as the interaction of swimming microorganisms with nutrients and other small particles(14) (for example, degraded plastic) and the design of artificial nanoscale machines(15).


领域地球科学 ; 气候变化 ; 资源环境
收录类别SCI-E
WOS记录号WOS:000520778000012
WOS关键词BACTERIAL ; SUCCESS ; ALGAE
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/281382
专题地球科学
资源环境科学
气候变化
作者单位1.Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA;
2.Harvard Med Sch, Dept Cell Biol, Boston, MA 02115 USA;
3.MIT, Koch Inst Integrat Canc Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA;
4.Harvard Med Sch, Beth Israel Deaconess Med Ctr, Dept Med, Div Endocrinol Diabet & Metab, Boston, MA 02115 USA;
5.Harvard Med Sch, Dept Immunol, Boston, MA 02115 USA;
6.Univ Penn, Dept Canc Biol, Perelman Sch Med, Philadelphia, PA 19104 USA
推荐引用方式
GB/T 7714
Hu, Bo,Jin, Chengcheng,Zeng, Xing,et al. Loopy Levy flights enhance tracer diffusion in active suspensions[J]. NATURE,2020,579(7799):364-+.
APA Hu, Bo.,Jin, Chengcheng.,Zeng, Xing.,Resch, Jon M..,Jedrychowski, Mark P..,...&Spiegelman, Bruce M..(2020).Loopy Levy flights enhance tracer diffusion in active suspensions.NATURE,579(7799),364-+.
MLA Hu, Bo,et al."Loopy Levy flights enhance tracer diffusion in active suspensions".NATURE 579.7799(2020):364-+.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hu, Bo]的文章
[Jin, Chengcheng]的文章
[Zeng, Xing]的文章
百度学术
百度学术中相似的文章
[Hu, Bo]的文章
[Jin, Chengcheng]的文章
[Zeng, Xing]的文章
必应学术
必应学术中相似的文章
[Hu, Bo]的文章
[Jin, Chengcheng]的文章
[Zeng, Xing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。