GSTDTAP

浏览/检索结果: 共201条,第1-10条 帮助

限定条件                
已选(0)清除 条数/页:   排序方式:
欧盟为新的环境与气候战略项目投资超过2.33亿欧元 快报文章
地球科学快报,2024年第5期
作者:  王立伟
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:627/0  |  提交时间:2024/03/10
Strategic Environment and Climate Projects  Europe  
ESA发布《欧洲航天局年度空间环境报告》 快报文章
地球科学快报,2023年第18期
作者:  刘文浩
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:549/0  |  提交时间:2023/09/25
ESA  space environment report  
新研究评估美国废弃油气井的环境风险与机遇 快报文章
地球科学快报,2023年第14期
作者:  刘文浩
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:560/0  |  提交时间:2023/07/24
orphaned oil and gas wells  environment  
英国启动新一轮研究资助计划以应对关键环境挑战 快报文章
地球科学快报,2023年第11期
作者:  张树良
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:578/0  |  提交时间:2023/06/10
Research funding  environmental science  critical environment challenges  High risk research  NERC  
利用先进的人工智能技术实现对自然环境的精确测绘 快报文章
地球科学快报,2022年第07期
作者:  王立伟
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:716/0  |  提交时间:2022/04/08
New technique  model  natural environment  
A population of dust-enshrouded objects orbiting the Galactic black hole 期刊论文
NATURE, 2020, 577 (7790) : 337-+
作者:  Witze, Alexandra
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

The central 0.1 parsecs of the Milky Way host a supermassive black hole identified with the position of the radio and infrared source Sagittarius A* (refs.(1,2)), a cluster of young, massive stars (the S stars3) and various gaseous features(4,5). Recently, two unusual objects have been found to be closely orbiting Sagittarius A*: the so-called G sources, G1 and G2. These objects are unresolved (having a size of the order of 100 astronomical units, except at periapse, where the tidal interaction with the black hole stretches them along the orbit) and they show both thermal dust emission and line emission from ionized gas(6-10). G1 and G2 have generated attention because they appear to be tidally interacting with the supermassive Galactic black hole, possibly enhancing its accretion activity. No broad consensus has yet been reached concerning their nature: the G objects show the characteristics of gas and dust clouds but display the dynamical properties of stellar-mass objects. Here we report observations of four additional G objects, all lying within 0.04 parsecs of the black hole and forming a class that is probably unique to this environment. The widely varying orbits derived for the six G objects demonstrate that they were commonly but separately formed.


  
CSIRO指出水力压裂对生态环境的影响微乎甚微 快报文章
地球科学快报,2020年第9期
作者:  刘 学
Microsoft Word(13Kb)  |  收藏  |  浏览/下载:362/0  |  提交时间:2020/05/09
hydraulic fracturing  impact on ecological environment  influence degree  
Field-resolved infrared spectroscopy of biological systems 期刊论文
NATURE, 2020, 577 (7788) : 52-+
作者:  Pupeza, Ioachim;  Huber, Marinus;  Trubetskov, Michael;  Schweinberger, Wolfgang;  Hussain, Syed A.;  Hofer, Christina;  Fritsch, Kilian;  Poetzlberger, Markus;  Vamos, Lenard;  Fill, Ernst;  Amotchkina, Tatiana;  Kepesidis, Kosmas V.;  Apolonski, Alexander;  Karpowicz, Nicholas;  Pervak, Vladimir;  Pronin, Oleg;  Fleischmann, Frank;  Azzeer, Abdallah;  Zigman, Mihaela;  Krausz, Ferenc
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

The proper functioning of living systems and physiological phenotypes depends on molecular composition. Yet simultaneous quantitative detection of a wide variety of molecules remains a challenge(1-8). Here we show how broadband optical coherence opens up opportunities for fingerprinting complex molecular ensembles in their natural environment. Vibrationally excited molecules emit a coherent electric field following few-cycle infrared laser excitation(9-12), and this field is specific to the sample'  s molecular composition. Employing electro-optic sampling(10,12-15), we directly measure this global molecular fingerprint down to field strengths 10(7) times weaker than that of the excitation. This enables transillumination of intact living systems with thicknesses of the order of 0.1 millimetres, permitting broadband infrared spectroscopic probing of human cells and plant leaves. In a proof-of-concept analysis of human blood serum, temporal isolation of the infrared electric-field fingerprint from its excitation along with its sampling with attosecond timing precision results in detection sensitivity of submicrograms per millilitre of blood serum and a detectable dynamic range of molecular concentration exceeding 10(5). This technique promises improved molecular sensitivity and molecular coverage for probing complex, real-world biological and medical settings.


  
Confinement of atomically defined metal halide sheets in a metal-organic framework 期刊论文
NATURE, 2020, 577 (7788) : 64-+
作者:  Gonzalez, Miguel I.;  Turkiewicz, Ari B.;  Darago, Lucy E.;  Oktawiec, Julia;  Bustillo, Karen;  Grandjean, Fernande;  Long, Gary J.;  Long, Jeffrey R.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

The size-dependent and shape-dependent characteristics that distinguish nanoscale materials from bulk solids arise from constraining the dimensionality of an inorganic structure(1-3). As a consequence, many studies have focused on rationally shaping these materials to influence and enhance their optical, electronic, magnetic and catalytic properties(4-6). Although a select number of stable clusters can typically be synthesized within the nanoscale regime for a specific composition, isolating clusters of a predetermined size and shape remains a challenge, especially for those derived from two-dimensional materials. Here we realize a multidentate coordination environment in a metal-organic framework to stabilize discrete inorganic clusters within a porous crystalline support. We show confined growth of atomically defined nickel(ii) bromide, nickel(ii) chloride, cobalt(ii) chloride and iron(ii) chloride sheets through the peripheral coordination of six chelating bipyridine linkers. Notably, confinement within the framework defines the structure and composition of these sheets and facilitates their precise characterization by crystallography. Each metal(ii) halide sheet represents a fragment excised from a single layer of the bulk solid structure, and structures obtained at different precursor loadings enable observation of successive stages of sheet assembly. Finally, the isolated sheets exhibit magnetic behaviours distinct from those of the bulk metal halides, including the isolation of ferromagnetically coupled large-spin ground states through the elimination of long-range, interlayer magnetic ordering. Overall, these results demonstrate that the pore environment of a metal-organic framework can be designed to afford precise control over the size, structure and spatial arrangement of inorganic clusters.


  
Accelerated discovery of CO2 electrocatalysts using active machine learning 期刊论文
NATURE, 2020, 581 (7807) : 178-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:89/0  |  提交时间:2020/07/03

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy(1,2). Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy(3-8). Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products(9-16), and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 +/- 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction(17). Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.