GSTDTAP

浏览/检索结果: 共21条,第1-10条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
Delayed impact of natural climate solutions 期刊论文
Global Change Biology, 2020
作者:  Zhangcai Qin;  Bronson Griscom;  Yao Huang;  Wenping Yuan;  Xiuzhi Chen;  Wenjie Dong;  Tingting Li;  Jonathan Sanderman;  Pete Smith;  Fan Wang;  Song Yang
收藏  |  浏览/下载:13/0  |  提交时间:2020/11/09
Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells 期刊论文
Science, 2020
作者:  Haizhou Lu;  Yuhang Liu;  Paramvir Ahlawat;  Aditya Mishra;  Wolfgang R. Tress;  Felix T. Eickemeyer;  Yingguo Yang;  Fan Fu;  Zaiwei Wang;  Claudia E. Avalos;  Brian I. Carlsen;  Anand Agarwalla;  Xin Zhang;  Xiaoguo Li;  Yiqiang Zhan;  Shaik M. Zakeeruddin;  Lyndon Emsley;  Ursula Rothlisberger;  Lirong Zheng;  Anders Hagfeldt;  Michael Grätzel
收藏  |  浏览/下载:18/0  |  提交时间:2020/10/12
Macroscopic somatic clonal expansion in morphologically normal human urothelium 期刊论文
Science, 2020
作者:  Ruoyan Li;  Yiqing Du;  Zhanghua Chen;  Deshu Xu;  Tianxin Lin;  Shanzhao Jin;  Gongwei Wang;  Ziyang Liu;  Min Lu;  Xu Chen;  Tao Xu;  Fan Bai
收藏  |  浏览/下载:9/0  |  提交时间:2020/10/12
Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy 期刊论文
Science, 2020
作者:  Hongjing Gu;  Qi Chen;  Guan Yang;  Lei He;  Hang Fan;  Yong-Qiang Deng;  Yanxiao Wang;  Yue Teng;  Zhongpeng Zhao;  Yujun Cui;  Yuchang Li;  Xiao-Feng Li;  Jiangfan Li;  Na-Na Zhang;  Xiaolan Yang;  Shaolong Chen;  Yan Guo;  Guangyu Zhao;  Xiliang Wang;  De-Yan Luo;  Hui Wang;  Xiao Yang;  Yan Li;  Gencheng Han;  Yuxian He;  Xiaojun Zhou;  Shusheng Geng;  Xiaoli Sheng;  Shibo Jiang;  Shihui Sun;  Cheng-Feng Qin;  Yusen Zhou
收藏  |  浏览/下载:17/0  |  提交时间:2020/09/30
Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody 期刊论文
Science, 2020
作者:  Zhe Lv;  Yong-Qiang Deng;  Qing Ye;  Lei Cao;  Chun-Yun Sun;  Changfa Fan;  Weijin Huang;  Shihui Sun;  Yao Sun;  Ling Zhu;  Qi Chen;  Nan Wang;  Jianhui Nie;  Zhen Cui;  Dandan Zhu;  Neil Shaw;  Xiao-Feng Li;  Qianqian Li;  Liangzhi Xie;  Youchun Wang;  Zihe Rao;  Cheng-Feng Qin;  Xiangxi Wang
收藏  |  浏览/下载:17/0  |  提交时间:2020/09/22
Ancient DNA indicates human population shifts and admixture in northern and southern China 期刊论文
Science, 2020
作者:  Melinda A. Yang;  Xuechun Fan;  Bo Sun;  Chungyu Chen;  Jianfeng Lang;  Ying-Chin Ko;  Cheng-hwa Tsang;  Hunglin Chiu;  Tianyi Wang;  Qingchuan Bao;  Xiaohong Wu;  Mateja Hajdinjak;  Albert Min-Shan Ko;  Manyu Ding;  Peng Cao;  Ruowei Yang;  Feng Liu;  Birgit Nickel;  Qingyan Dai;  Xiaotian Feng;  Lizhao Zhang;  Chengkai Sun;  Chao Ning;  Wen Zeng;  Yongsheng Zhao;  Ming Zhang;  Xing Gao;  Yinqiu Cui;  David Reich;  Mark Stoneking;  Qiaomei Fu
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/21
A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2 期刊论文
Science, 2020
作者:  Yan Wu;  Feiran Wang;  Chenguang Shen;  Weiyu Peng;  Delin Li;  Cheng Zhao;  Zhaohui Li;  Shihua Li;  Yuhai Bi;  Yang Yang;  Yuhuan Gong;  Haixia Xiao;  Zheng Fan;  Shuguang Tan;  Guizhen Wu;  Wenjie Tan;  Xuancheng Lu;  Changfa Fan;  Qihui Wang;  Yingxia Liu;  Chen Zhang;  Jianxun Qi;  George Fu Gao;  Feng Gao;  Lei Liu
收藏  |  浏览/下载:11/0  |  提交时间:2020/06/16
Impaired cell fate through gain-of-function mutations in a chromatin reader 期刊论文
NATURE, 2020, 577 (7788) : 121-+
作者:  Wan, Liling;  Chong, Shasha;  Xuan, Fan;  Liang, Angela;  Cui, Xiaodong;  Gates, Leah;  Carroll, Thomas S.;  Li, Yuanyuan;  Feng, Lijuan;  Chen, Guochao;  Wang, Shu-Ping;  Ortiz, Michael V.;  Daley, Sara K.;  Wang, Xiaolu;  Xuan, Hongwen;  Kentsis, Alex;  Muir, Tom W.;  Roeder, Robert G.;  Li, Haitao;  Li, Wei;  Tjian, Robert;  Wen, Hong;  Allis, C. David
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Modifications of histone proteins have essential roles in normal development and human disease. Recognition of modified histones by '  reader'  proteins is a key mechanism that mediates the function of histone modifications, but how the dysregulation of these readers might contribute to disease remains poorly understood. We previously identified the ENL protein as a reader of histone acetylation via its YEATS domain, linking it to the expression of cancer-driving genes in acute leukaemia1. Recurrent hotspot mutations have been found in the ENL YEATS domain in Wilms tumour2,3, the most common type of paediatric kidney cancer. Here we show, using human and mouse cells, that these mutations impair cell-fate regulation by conferring gain-of-function in chromatin recruitment and transcriptional control. ENL mutants induce gene-expression changes that favour a premalignant cell fate, and, in an assay for nephrogenesis using murine cells, result in undifferentiated structures resembling those observed in human Wilms tumour. Mechanistically, although bound to largely similar genomic loci as the wild-type protein, ENL mutants exhibit increased occupancy at a subset of targets, leading to a marked increase in the recruitment and activity of transcription elongation machinery that enforces active transcription from target loci. Furthermore, ectopically expressed ENL mutants exhibit greater self-association and form discrete and dynamic nuclear puncta that are characteristic of biomolecular hubs consisting of local high concentrations of regulatory factors. Such mutation-driven ENL self-association is functionally linked to enhanced chromatin occupancy and gene activation. Collectively, our findings show that hotspot mutations in a chromatinreader domain drive self-reinforced recruitment, derailing normal cell-fate control during development and leading to an oncogenic outcome.


  
The water lily genome and the early evolution of flowering plants 期刊论文
NATURE, 2020, 577 (7788) : 79-+
作者:  Zhang, Liangsheng;  Chen, Fei;  Zhang, Xingtan;  Li, Zhen;  Zhao, Yiyong;  Lohaus, Rolf;  Chang, Xiaojun;  Dong, Wei;  Ho, Simon Y. W.;  Liu, Xing;  Song, Aixia;  Chen, Junhao;  Guo, Wenlei;  Wang, Zhengjia;  Zhuang, Yingyu;  Wang, Haifeng;  Chen, Xuequn;  Hu, Juan;  Liu, Yanhui;  Qin, Yuan;  Wang, Kai;  Dong, Shanshan;  Liu, Yang;  Zhang, Shouzhou;  Yu, Xianxian;  Wu, Qian;  Wang, Liangsheng;  Yan, Xueqing;  Jiao, Yuannian;  Kong, Hongzhi;  Zhou, Xiaofan;  Yu, Cuiwei;  Chen, Yuchu;  Li, Fan;  Wang, Jihua;  Chen, Wei;  Chen, Xinlu;  Jia, Qidong;  Zhang, Chi;  Jiang, Yifan;  Zhang, Wanbo;  Liu, Guanhua;  Fu, Jianyu;  Chen, Feng;  Ma, Hong;  Van de Peer, Yves;  Tang, Haibao
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms(1-3). Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.


  
Accelerated discovery of CO2 electrocatalysts using active machine learning 期刊论文
NATURE, 2020, 581 (7807) : 178-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:89/0  |  提交时间:2020/07/03

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy(1,2). Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy(3-8). Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products(9-16), and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 +/- 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction(17). Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.