GSTDTAP

浏览/检索结果: 共91条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
WHY HEALTHY ARTERIES MIGHT HELP KIDS AVOID COVID COMPLICATIONS 期刊论文
NATURE, 2020, 582 (7812) : 324-325
作者:  Niu, Jixiao;  Sun, Yang;  Chen, Baoen;  Zheng, Baohui;  Jarugumilli, Gopala K.;  Walker, Sarah R.;  Hata, Aaron N.;  Mino-Kenudson, Mari;  Frank, David A.;  Wu, Xu
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03
El Nino Diversity Across Boreal Spring Predictability Barrier 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (13)
作者:  Wang, Bin;  Luo, Xiao;  Sun, Weiyi;  Yang, Young-Min;  Liu, Jian
收藏  |  浏览/下载:17/0  |  提交时间:2020/06/16
El Nino diversity  El Nino transition  k-means cluster analysis  El Nino precursors  El Nino impact  spring predictability barrier  
Increase of High Molecular Weight Organosulfate With Intensifying Urban Air Pollution in the Megacity Beijing 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (10)
作者:  Xie, Qiaorong;  Li, Ying;  Yue, Siyao;  Su, Sihui;  Cao, Dong;  Xu, Yisheng;  Chen, Jing;  Tong, Haijie;  Su, Hang;  Cheng, Yafang;  Zhao, Wanyu;  Hu, Wei;  Wang, Zhe;  Yang, Ting;  Pan, Xiaole;  Sun, Yele;  Wang, Zifa;  Liu, Cong-Qiang;  Kawamura, Kimitaka;  Jiang, Guibin;  Shiraiwa, Manabu;  Fu, Pingqing
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/02
Organic aerosol  Organosulfates  FT-ICR MS  Secondary organic aerosol  Volatile organic compounds  
Amagmatic Subduction Produced by Mantle Serpentinization and Oceanic Crust Delamination 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (9)
作者:  Yang, Jianfeng;  Lu, Gang;  Liu, Tong;  Li, Yang;  Wang, Kun;  Wang, Xinxin;  Sun, Baolu;  Faccenda, Manuele;  Zhao, Liang
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
numerical modeling  arc gap  flux melting  subduction zone  mantle serpentinization  
Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease 期刊论文
NATURE, 2020, 577 (7788) : 103-+
作者:  Lalaoui, Najoua;  Boyden, Steven E.;  Oda, Hirotsugu;  Wood, Geryl M.;  Stone, Deborah L.;  Chau, Diep;  Liu, Lin;  Stoffels, Monique;  Kratina, Tobias;  Lawlor, Kate E.;  Zaal, Kristien J. M.;  Hoffmann, Patrycja M.;  Etemadi, Nima;  Shield-Artin, Kristy;  Biben, Christine;  Tsai, Wanxia Li;  Blake, Mary D.;  Kuehn, Hye Sun;  Yang, Dan;  Anderton, Holly;  Silke, Natasha;  Wachsmuth, Laurens;  Zheng, Lixin;  Moura, Natalia Sampaio;  Beck, David B.;  Gutierrez-Cruz, Gustavo;  Ombrello, Amanda K.;  Pinto-Patarroyo, Gineth P.;  Kueh, Andrew J.;  Herold, Marco J.;  Hall, Cathrine;  Wang, Hongying;  Chae, Jae Jin;  Dmitrieva, Natalia I.;  McKenzie, Mark;  Light, Amanda;  Barham, Beverly K.;  Jones, Anne;  Romeo, Tina M.;  Zhou, Qing;  Aksentijevich, Ivona;  Mullikin, James C.;  Gross, Andrew J.;  Shum, Anthony K.;  Hawkins, Edwin D.;  Masters, Seth L.;  Lenardo, Michael J.;  Boehm, Manfred;  Rosenzweig, Sergio D.;  Pasparakis, Manolis;  Voss, Anne K.;  Gadina, Massimo;  Kastner, Daniel L.;  Silke, John
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

RIPK1 is a key regulator of innate immune signalling pathways. To ensure an optimal inflammatory response, RIPK1 is regulated post-translationally by well-characterized ubiquitylation and phosphorylation events, as well as by caspase-8-mediated cleavage1-7. The physiological relevance of this cleavage event remains unclear, although it is thought to inhibit activation of RIPK3 and necroptosis8. Here we show that the heterozygous missense mutations D324N, D324H and D324Y prevent caspase cleavage of RIPK1 in humans and result in an early-onset periodic fever syndrome and severe intermittent lymphadenopathy-a condition we term '  cleavage-resistant RIPK1-induced autoinflammatory syndrome'  . To define the mechanism for this disease, we generated a cleavage-resistant Ripk1(D325A) mutant mouse strain. Whereas Ripk1(-/-) mice died postnatally from systemic inflammation, Ripk1(D325A/D325A) mice died during embryogenesis. Embryonic lethality was completely prevented by the combined loss of Casp8 and Ripk3, but not by loss of Ripk3 or Mlkl alone. Loss of RIPK1 kinase activity also prevented Ripk1(D325A/D325A) embryonic lethality, although the mice died before weaning from multi-organ inflammation in a RIPK3-dependent manner. Consistently, Ripk1(D325A/D325A) and Ripk1(D325A/+) cells were hypersensitive to RIPK3-dependent TNF-induced apoptosis and necroptosis. Heterozygous Ripk1(D325A/+) mice were viable and grossly normal, but were hyper-responsive to inflammatory stimuli in vivo. Our results demonstrate the importance of caspase-mediated RIPK1 cleavage during embryonic development and show that caspase cleavage of RIPK1 not only inhibits necroptosis but also maintains inflammatory homeostasis throughout life.


  
A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1 期刊论文
NATURE, 2020, 577 (7788) : 109-+
作者:  Tao, Panfeng;  Sun, Jinqiao;  Wu, Zheming;  Wang, Shihao;  Wang, Jun;  Li, Wanjin;  Pan, Heling;  Bai, Renkui;  Zhang, Jiahui;  Wang, Ying;  Lee, Pui Y.;  Ying, Wenjing;  Zhou, Qinhua;  Hou, Jia;  Wang, Wenjie;  Sun, Bijun;  Yang, Mi;  Liu, Danru;  Fang, Ran;  Han, Huan;  Yang, Zhaohui;  Huang, Xin;  Li, Haibo;  Deuitch, Natalie;  Zhang, Yuan;  Dissanayake, Dilan;  Haude, Katrina;  McWalter, Kirsty;  Roadhouse, Chelsea;  MacKenzie, Jennifer J.;  Laxer, Ronald M.;  Aksentijevich, Ivona;  Yu, Xiaomin;  Wang, Xiaochuan;  Yuan, Junying;  Zhou, Qing
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

Activation of RIPK1 controls TNF-mediated apoptosis, necroptosis and inflammatory pathways(1). Cleavage of human and mouse RIPK1 after residues D324 and D325, respectively, by caspase-8 separates the RIPK1 kinase domain from the intermediate and death domains. The D325A mutation in mouse RIPK1 leads to embryonic lethality during mouse development(2,3). However, the functional importance of blocking caspase-8-mediated cleavage of RIPK1 on RIPK1 activation in humans is unknown. Here we identify two families with variants in RIPK1 (D324V and D324H) that lead to distinct symptoms of recurrent fevers and lymphadenopathy in an autosomaldominant manner. Impaired cleavage of RIPK1 D324 variants by caspase-8 sensitized patients'  peripheral blood mononuclear cells to RIPK1 activation, apoptosis and necroptosis induced by TNF. The patients showed strong RIPK1-dependent activation of inflammatory signalling pathways and overproduction of inflammatory cytokines and chemokines compared with unaffected controls. Furthermore, we show that expression of the RIPK1 mutants D325V or D325H in mouse embryonic fibroblasts confers not only increased sensitivity to RIPK1 activation-mediated apoptosis and necroptosis, but also induction of pro-inflammatory cytokines such as IL-6 and TNF. By contrast, patient-derived fibroblasts showed reduced expression of RIPK1 and downregulated production of reactive oxygen species, resulting in resistance to necroptosis and ferroptosis. Together, these data suggest that human non-cleavable RIPK1 variants promote activation of RIPK1, and lead to an autoinflammatory disease characterized by hypersensitivity to apoptosis and necroptosis and increased inflammatory response in peripheral blood mononuclear cells, as well as a compensatory mechanism to protect against several pro-death stimuli in fibroblasts.


  
HBO1 is required for the maintenance of leukaemia stem cells 期刊论文
NATURE, 2020, 577 (7789) : 266-+
作者:  MacPherson, Laura;  Anokye, Juliana;  Yeung, Miriam M.;  Lam, Enid Y. N.;  Chan, Yih-Chih;  Weng, Chen-Fang;  Yeh, Paul;  Knezevic, Kathy;  Butler, Miriam S.;  Hoegl, Annabelle;  Chan, Kah-Lok;  Burr, Marian L.;  Gearing, Linden J.;  Willson, Tracy;  Liu, Joy;  Choi, Jarny;  Yang, Yuqing;  Bilardi, Rebecca A.;  Falk, Hendrik;  Nghi Nguyen;  Stupple, Paul A.;  Peat, Thomas S.;  Zhang, Ming;  de Silva, Melanie;  Carrasco-Pozo, Catalina;  Avery, Vicky M.;  Khoo, Poh Sim;  Dolezal, Olan;  Dennis, Matthew L.;  Nuttall, Stewart;  Surjadi, Regina;  Newman, Janet;  Ren, Bin;  Leaver, David J.;  Sun, Yuxin;  Baell, Jonathan B.;  Dovey, Oliver;  Vassiliou, George S.;  Grebien, Florian;  Dawson, Sarah-Jane;  Street, Ian P.;  Monahan, Brendon J.;  Burns, Christopher J.;  Choudhary, Chunaram;  Blewitt, Marnie E.;  Voss, Anne K.;  Thomas, Tim;  Dawson, Mark A.
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)(1). Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings.


  
Nanoplasma-enabled picosecond switches for ultrafast electronics (vol 579, pg 534, 2020) 期刊论文
NATURE, 2020, 580 (7803) : E8-E8
作者:  Li, Jing;  Xu, Chuanliang;  Lee, Hyung Joo;  Ren, Shancheng;  Zi, Xiaoyuan;  Zhang, Zhiming;  Wang, Haifeng;  Yu, Yongwei;  Yang, Chenghua;  Gao, Xiaofeng;  Hou, Jianguo;  Wang, Linhui;  Yang, Bo;  Yang, Qing;  Ye, Huamao;  Zhou, Tie;  Lu, Xin;  Wang, Yan;  Qu, Min;  Yang, Qingsong;  Zhang, Wenhui;  Shah, Nakul M.;  Pehrsson, Erica C.;  Wang, Shuo;  Wang, Zengjun;  Jiang, Jun;  Zhu, Yan;  Chen, Rui;  Chen, Huan;  Zhu, Feng;  Lian, Bijun;  Li, Xiaoyun;  Zhang, Yun;  Wang, Chao;  Wang, Yue;  Xiao, Guangan;  Jiang, Junfeng;  Yang, Yue;  Liang, Chaozhao;  Hou, Jianquan;  Han, Conghui;  Chen, Ming;  Jiang, Ning;  Zhang, Dahong;  Wu, Song;  Yang, Jinjian;  Wang, Tao;  Chen, Yongliang;  Cai, Jiantong;  Yang, Wenzeng;  Xu, Jun;  Wang, Shaogang;  Gao, Xu;  Wang, Ting;  Sun, Yinghao
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/03
Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins 期刊论文
NATURE, 2020, 583 (7815) : 282-+
作者:  Li, Jia;  Yang, Xiangdong;  Liu, Yang;  Huang, Bolong;  Wu, Ruixia;  Zhang, Zhengwei;  Zhao, Bei;  Ma, Huifang;  Dang, Weiqi;  Wei, Zheng;  Wang, Kai;  Lin, Zhaoyang;  Yan, Xingxu;  Sun, Mingzi;  Li, Bo;  Pan, Xiaoqing;  Luo, Jun;  Zhang, Guangyu;  Liu, Yuan;  Huang, Yu;  Duan, Xidong;  Duan, Xiangfeng
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-2(1). This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection(2).Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manisjavanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.


  
Universal quantum logic in hot silicon qubits 期刊论文
NATURE, 2020, 580 (7803) : 355-+
作者:  Li, Jia;  Yang, Xiangdong;  Liu, Yang;  Huang, Bolong;  Wu, Ruixia;  Zhang, Zhengwei;  Zhao, Bei;  Ma, Huifang;  Dang, Weiqi;  Wei, Zheng;  Wang, Kai;  Lin, Zhaoyang;  Yan, Xingxu;  Sun, Mingzi;  Li, Bo;  Pan, Xiaoqing;  Luo, Jun;  Zhang, Guangyu;  Liu, Yuan;  Huang, Yu;  Duan, Xidong;  Duan, Xiangfeng
收藏  |  浏览/下载:40/0  |  提交时间:2020/07/03

Quantum computation requires many qubits that can be coherently controlled and coupled to each other(1). Qubits that are defined using lithographic techniques have been suggested to enable the development of scalable quantum systems because they can be implemented using semiconductor fabrication technology(2-5). However, leading solid-state approaches function only at temperatures below 100 millikelvin, where cooling power is extremely limited, and this severely affects the prospects of practical quantum computation. Recent studies of electron spins in silicon have made progress towards a platform that can be operated at higher temperatures by demonstrating long spin lifetimes(6), gate-based spin readout(7) and coherent single-spin control(8). However, a high-temperature two-qubit logic gate has not yet been demonstrated. Here we show that silicon quantum dots can have sufficient thermal robustness to enable the execution of a universal gate set at temperatures greater than one kelvin. We obtain single-qubit control via electron spin resonance and readout using Pauli spin blockade. In addition, we show individual coherent control of two qubits and measure single-qubit fidelities of up to 99.3 per cent. We demonstrate the tunability of the exchange interaction between the two spins from 0.5 to 18 megahertz and use it to execute coherent two-qubit controlled rotations. The demonstration of '  hot'  and universal quantum logic in a semiconductor platform paves the way for quantum integrated circuits that host both the quantum hardware and its control circuitry on the same chip, providing a scalable approach towards practical quantum information processing.