GSTDTAP

浏览/检索结果: 共16条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Evidence of water on the lunar surface from Chang鈥橢-5 in-situ spectra and returned samples 期刊论文
Nature Communications, 2022
作者:  Liu, Jianjun;  Liu, Bin;  Ren, Xin;  Li, Chunlai;  Shu, Rong;  Guo, Lin;  Yu, Songzheng;  Zhou, Qin;  Liu, Dawei;  Zeng, Xingguo;  Gao, Xingye;  Zhang, Guangliang;  Yan, Wei;  Zhang, Hongbo;  Jia, Lihui;  Jin, Shifeng;  Xu, Chunhua;  Deng, Xiangjin;  Xie, Jianfeng;  Yang, Jianfeng;  Huang, Changning;  Zuo, Wei;  Su, Yan;  Wen, Weibin;  Ouyang, Ziyuan
收藏  |  浏览/下载:13/0  |  提交时间:2022/06/24
Subduction Polarity Reversal Triggered by Oceanic Plateau Accretion: Implications for Induced Subduction Initiation 期刊论文
Geophysical Research Letters, 2021
作者:  Baolu Sun;  Boris J. P. Kaus;  Jianfeng Yang;  Gang Lu;  Xinxin Wang;  Kun Wang;  Liang Zhao
收藏  |  浏览/下载:10/0  |  提交时间:2021/12/15
Physical and mechanical characteristics of lunar soil at the Chang’E‐4 landing site 期刊论文
Geophysical Research Letters, 2020
作者:  Zhencheng Tang;  Jianjun Liu;  Xing Wang;  Xin Ren;  Wangli Chen;  Wei Yan;  Xiaoxia Zhang;  Xu Tan;  Xingguo Zeng;  Dawei Liu;  Hongbo Zhang;  Weibin Wen;  Wei Zuo;  Yan Su;  Jianfeng Yang;  Chunlai Li
收藏  |  浏览/下载:8/0  |  提交时间:2020/11/09
Ancient DNA indicates human population shifts and admixture in northern and southern China 期刊论文
Science, 2020
作者:  Melinda A. Yang;  Xuechun Fan;  Bo Sun;  Chungyu Chen;  Jianfeng Lang;  Ying-Chin Ko;  Cheng-hwa Tsang;  Hunglin Chiu;  Tianyi Wang;  Qingchuan Bao;  Xiaohong Wu;  Mateja Hajdinjak;  Albert Min-Shan Ko;  Manyu Ding;  Peng Cao;  Ruowei Yang;  Feng Liu;  Birgit Nickel;  Qingyan Dai;  Xiaotian Feng;  Lizhao Zhang;  Chengkai Sun;  Chao Ning;  Wen Zeng;  Yongsheng Zhao;  Ming Zhang;  Xing Gao;  Yinqiu Cui;  David Reich;  Mark Stoneking;  Qiaomei Fu
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/21
New Insight into Lunar Regolith‐forming Processes by the Lunar Rover Yutu‐2 期刊论文
Geophysical Research Letters, 2020
作者:  Honglei Lin;  Yangting Lin;  Wei Yang;  Zhiping He;  Sen Hu;  Yong Wei;  Rui Xu;  Jinhai Zhang;  Xiaohui Liu;  Jianfeng Yang;  Yan Xing;  Chengwu Yu;  Yongliao Zou
收藏  |  浏览/下载:11/0  |  提交时间:2020/06/29
Amagmatic Subduction Produced by Mantle Serpentinization and Oceanic Crust Delamination 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (9)
作者:  Yang, Jianfeng;  Lu, Gang;  Liu, Tong;  Li, Yang;  Wang, Kun;  Wang, Xinxin;  Sun, Baolu;  Faccenda, Manuele;  Zhao, Liang
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/02
numerical modeling  arc gap  flux melting  subduction zone  mantle serpentinization  
Injured adult neurons regress to an embryonic transcriptional growth state 期刊论文
NATURE, 2020, 581 (7806) : 77-+
作者:  Wang, Ruicong;  Li, Hongda;  Wu, Jianfeng;  Cai, Zhi-Yu;  Li, Baizhou;  Ni, Hengxiao;  Qiu, Xingfeng;  Chen, Hui;  Liu, Wei;  Yang, Zhang-Hua;  Liu, Min;  Hu, Jin;  Liang, Yaoji;  Lan, Ping;  Han, Jiahuai;  Mo, Wei
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

Grafts of spinal-cord-derived neural progenitor cells (NPCs) enable the robust regeneration of corticospinal axons and restore forelimb function after spinal cord injury(1)  however, the molecular mechanisms that underlie this regeneration are unknown. Here we perform translational profiling specifically of corticospinal tract (CST) motor neurons in mice, to identify their '  regenerative transcriptome'  after spinal cord injury and NPC grafting. Notably, both injury alone and injury combined with NPC grafts elicit virtually identical early transcriptomic responses in host CST neurons. However, in mice with injury alone this regenerative transcriptome is downregulated after two weeks, whereas in NPC-grafted mice this transcriptome is sustained. The regenerative transcriptome represents a reversion to an embryonic transcriptional state of the CST neuron. The huntingtin gene (Htt) is a central hub in the regeneration transcriptome  deletion of Htt significantly attenuates regeneration, which shows that Htt has a key role in neural plasticity after injury.


In mouse models of central nervous system injury, Htt is shown to be a key component of the regulatory program associated with reversion of the neuronal transcriptome to a less-mature state.


  
The gut-brain axis mediates sugar preference 期刊论文
NATURE, 2020, 580 (7804) : 511-+
作者:  Wang, Ruicong;  Li, Hongda;  Wu, Jianfeng;  Cai, Zhi-Yu;  Li, Baizhou;  Ni, Hengxiao;  Qiu, Xingfeng;  Chen, Hui;  Liu, Wei;  Yang, Zhang-Hua;  Liu, Min;  Hu, Jin;  Liang, Yaoji;  Lan, Ping;  Han, Jiahuai;  Mo, Wei
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

The taste of sugar is one of the most basic sensory percepts for humans and other animals. Animals can develop a strong preference for sugar even if they lack sweet taste receptors, indicating a mechanism independent of taste(1-3). Here we examined the neural basis for sugar preference and demonstrate that a population of neurons in the vagal ganglia and brainstem are activated via the gut-brain axis to create preference for sugar. These neurons are stimulated in response to sugar but not artificial sweeteners, and are activated by direct delivery of sugar to the gut. Using functional imaging we monitored activity of the gut-brain axis, and identified the vagal neurons activated by intestinal delivery of glucose. Next, we engineered mice in which synaptic activity in this gut-to-brain circuit was genetically silenced, and prevented the development of behavioural preference for sugar. Moreover, we show that co-opting this circuit by chemogenetic activation can create preferences to otherwise less-preferred stimuli. Together, these findings reveal a gut-to-brain post-ingestive sugar-sensing pathway critical for the development of sugar preference. In addition, they explain the neural basis for differences in the behavioural effects of sweeteners versus sugar, and uncover an essential circuit underlying the highly appetitive effects of sugar.


Experiments in mice show that a population of neurons in the vagal ganglia respond to the presence of glucose in the gut and connect to neurons in the brainstem, revealing the circuit that underlies the neural basis for the behavioural preference for sugar.


  
CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities 期刊论文
NATURE, 2020
作者:  Yang, Jianfeng;  Faccenda, Manuele
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Cancer genomics studies have identified thousands of putative cancer driver genes(1). Development of high-throughput and accurate models to define the functions of these genes is a major challenge. Here we devised a scalable cancer-spheroid model and performed genome-wide CRISPR screens in 2D monolayers and 3D lung-cancer spheroids. CRISPR phenotypes in 3D more accurately recapitulated those of in vivo tumours, and genes with differential sensitivities between 2D and 3D conditions were highly enriched for genes that are mutated in lung cancers. These analyses also revealed drivers that are essential for cancer growth in 3D and in vivo, but not in 2D. Notably, we found that carboxypeptidase D is responsible for removal of a C-terminal RKRR motif(2) from the alpha-chain of the insulin-like growth factor 1 receptor that is critical for receptor activity. Carboxypeptidase D expression correlates with patient outcomes in patients with lung cancer, and loss of carboxypeptidase D reduced tumour growth. Our results reveal key differences between 2D and 3D cancer models, and establish a generalizable strategy for performing CRISPR screens in spheroids to reveal cancer vulnerabilities.


CRISPR screens in a 3D spheroid cancer model system more accurately recapitulate cancer phenotypes than existing 2D models and were used to identify carboxypeptidase D, acting via the IGF1R, as a 3D-specific driver of cancer growth.


  
Structural basis of energy transfer in Porphyridium purpureum phycobilisome 期刊论文
NATURE, 2020
作者:  Long, Haizhen;  Zhang, Liwei;  Lv, Mengjie;  Wen, Zengqi;  Zhang, Wenhao;  Chen, Xiulan;  Zhang, Peitao;  Li, Tongqing;  Chang, Luyuan;  Jin, Caiwei;  Wu, Guozhao;  Wang, Xi;  Yang, Fuquan;  Pei, Jianfeng;  Chen, Ping;  Margueron, Raphael;  Deng, Haiteng;  Zhu, Mingzhao;  Li, Guohong
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03

The cryo-electron microscopy structure of a phycobilisome from the red alga Porphyridium purpureum reveals how aromatic interactions between the linker proteins and the chromophores drive a unidirectional transfer of energy.


Photosynthetic organisms have developed various light-harvesting systems to adapt to their environments(1). Phycobilisomes are large light-harvesting protein complexes found in cyanobacteria and red algae(2-4), although how the energies of the chromophores within these complexes are modulated by their environment is unclear. Here we report the cryo-electron microscopy structure of a 14.7-megadalton phycobilisome with a hemiellipsoidal shape from the red alga Porphyridium purpureum. Within this complex we determine the structures of 706 protein subunits, including 528 phycoerythrin, 72 phycocyanin, 46 allophycocyanin and 60 linker proteins. In addition, 1,598 chromophores are resolved comprising 1,430 phycoerythrobilin, 48 phycourobilin and 120 phycocyanobilin molecules. The markedly improved resolution of our structure compared with that of the phycobilisome of Griffithsia pacifica(5) enabled us to build an accurate atomic model of the P. purpureum phycobilisome system. The model reveals how the linker proteins affect the microenvironment of the chromophores, and suggests that interactions of the aromatic amino acids of the linker proteins with the chromophores may be a key factor in fine-tuning the energy states of the chromophores to ensure the efficient unidirectional transfer of energy.