GSTDTAP

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
DOE项目将借助AI技术实现对地球系统过程的精准预测 快报文章
地球科学快报,2023年第3期
作者:  张树良
Microsoft Word(41Kb)  |  收藏  |  浏览/下载:624/0  |  提交时间:2023/02/10
earth system processes  predictability  AI  ML  earth science  DOE  
PIK开发出下一代地球系统模式POEM 快报文章
地球科学快报,2021年第14期
作者:  刘燕飞
Microsoft Word(52Kb)  |  收藏  |  浏览/下载:454/0  |  提交时间:2021/07/26
Earth System Models  POE  Mcoupled model  biospheric processes  PIK  
A remnant planetary core in the hot-Neptune desert 期刊论文
NATURE, 2020, 583 (7814) : 39-+
作者:  David J. Armstrong;  Thé;  o A. Lopez;  Vardan Adibekyan;  Richard A. Booth;  Edward M. Bryant;  Karen A. Collins;  Magali Deleuil;  Alexandre Emsenhuber;  Chelsea X. Huang;  George W. King;  Jorge Lillo-Box;  Jack J. Lissauer;  Elisabeth Matthews;  Olivier Mousis;  Louise D. Nielsen;  Hugh Osborn;  Jon Otegi;  Nuno C. Santos;  ;  rgio G. Sousa;  Keivan G. Stassun;  Dimitri Veras;  Carl Ziegler;  Jack S. Acton;  Jose M. Almenara;  David R. Anderson;  David Barrado;  Susana C. C. Barros;  Daniel Bayliss;  Claudia Belardi;  Francois Bouchy;  ;  sar Briceñ;  o;  Matteo Brogi;  David J. A. Brown;  Matthew R. Burleigh;  Sarah L. Casewell;  Alexander Chaushev;  David R. Ciardi;  Kevin I. Collins;  Knicole D. Coló;  n;  Benjamin F. Cooke;  Ian J. M. Crossfield;  Rodrigo F. Dí;  az;  Elisa Delgado Mena;  Olivier D. S. Demangeon;  Caroline Dorn;  Xavier Dumusque;  Philipp Eigmü;  ller;  Michael Fausnaugh;  Pedro Figueira;  Tianjun Gan;  Siddharth Gandhi;  Samuel Gill;  Erica J. Gonzales;  Michael R. Goad;  Maximilian N. Gü;  nther;  Ravit Helled;  Saeed Hojjatpanah;  Steve B. Howell;  James Jackman;  James S. Jenkins;  Jon M. Jenkins;  Eric L. N. Jensen;  Grant M. Kennedy;  David W. Latham;  Nicholas Law;  Monika Lendl;  Michael Lozovsky;  Andrew W. Mann;  Maximiliano Moyano;  James McCormac;  Farzana Meru;  Christoph Mordasini;  Ares Osborn;  Don Pollacco;  Didier Queloz;  Liam Raynard;  George R. Ricker;  Pamela Rowden;  Alexandre Santerne;  Joshua E. Schlieder;  Sara Seager;  Lizhou Sha;  Thiam-Guan Tan;  Rosanna H. Tilbrook;  Eric Ting;  Sté;  phane Udry;  Roland Vanderspek;  Christopher A. Watson;  Richard G. West;  Paul A. Wilson;  Joshua N. Winn;  Peter Wheatley;  Jesus Noel Villasenor;  Jose I. Vines;  Zhuchang Zhan
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/06

The interiors of giant planets remain poorly understood. Even for the planets in the Solar System, difficulties in observation lead to large uncertainties in the properties of planetary cores. Exoplanets that have undergone rare evolutionary processes provide a route to understanding planetary interiors. Planets found in and near the typically barren hot-Neptune '  desert'  (1,2)(a region in mass-radius space that contains few planets) have proved to be particularly valuable in this regard. These planets include HD149026b(3), which is thought to have an unusually massive core, and recent discoveries such as LTT9779b(4)and NGTS-4b(5), on which photoevaporation has removed a substantial part of their outer atmospheres. Here we report observations of the planet TOI-849b, which has a radius smaller than Neptune'  s but an anomalously large mass of39.1-2.6+2.7Earth masses and a density of5.2-0.8+0.7grams per cubic centimetre, similar to Earth'  s. Interior-structure models suggest that any gaseous envelope of pure hydrogen and helium consists of no more than3.9-0.9+0.8 per cent of the total planetary mass. The planet could have been a gas giant before undergoing extreme mass loss via thermal self-disruption or giant planet collisions, or it could have avoided substantial gas accretion, perhaps through gap opening or late formation(6). Although photoevaporation rates cannot account for the mass loss required to reduce a Jupiter-like gas giant, they can remove a small (a few Earth masses) hydrogen and helium envelope on timescales of several billion years, implying that any remaining atmosphere on TOI-849b is likely to be enriched by water or other volatiles from the planetary interior. We conclude that TOI-849b is the remnant core of a giant planet.


Observations of TOI-849b reveal a radius smaller than Neptune'  s but a large mass of about 40 Earth masses, indicating that the planet is the remnant core of a gas giant.


  
Highly porous nature of a primitive asteroid revealed by thermal imaging 期刊论文
NATURE, 2020, 579 (7800) : 518-522
作者:  Quinn, Robert A.;  Melnik, Alexey, V;  Vrbanac, Alison;  Fu, Ting;  Patras, Kathryn A.;  Christy, Mitchell P.;  Bodai, Zsolt;  Belda-Ferre, Pedro;  Tripathi, Anupriya;  Chung, Lawton K.;  Downes, Michael;  Welch, Ryan D.;  Quinn, Melissa;  Humphrey, Greg;  Panitchpakdi, Morgan;  Weldon, Kelly C.;  Aksenov, Alexander;  da Silva, Ricardo;  Avila-Pacheco, Julian;  Clish, Clary;  Bae, Sena;  Mallick, Himel;  Franzosa, Eric A.;  Lloyd-Price, Jason;  Bussell, Robert;  Thron, Taren;  Nelson, Andrew T.;  Wang, Mingxun;  Leszczynski, Eric;  Vargas, Fernando;  Gauglitz, Julia M.;  Meehan, Michael J.;  Gentry, Emily;  Arthur, Timothy D.;  Komor, Alexis C.;  Poulsen, Orit;  Boland, Brigid S.;  Chang, John T.;  Sandborn, William J.;  Lim, Meerana;  Garg, Neha;  Lumeng, Julie C.;  Xavier, Ramnik J.;  Kazmierczak, Barbara, I;  Jain, Ruchi;  Egan, Marie;  Rhee, Kyung E.;  Ferguson, David;  Raffatellu, Manuela;  Vlamakis, Hera;  Haddad, Gabriel G.;  Siegel, Dionicio;  Huttenhower, Curtis;  Mazmanian, Sarkis K.;  Evans, Ronald M.;  Nizet, Victor;  Knight, Rob;  Dorrestein, Pieter C.
收藏  |  浏览/下载:47/0  |  提交时间:2020/05/13

Carbonaceous (C-type) asteroids(1) are relics of the early Solar System that have preserved primitive materials since their formation approximately 4.6 billion years ago. They are probably analogues of carbonaceous chondrites(2,3) and are essential for understanding planetary formation processes. However, their physical properties remain poorly known because carbonaceous chondrite meteoroids tend not to survive entry to Earth'  s atmosphere. Here we report on global one-rotation thermographic images of the C-type asteroid 162173 Ryugu, taken by the thermal infrared imager (TIR)(4) onboard the spacecraft Hayabusa2(5), indicating that the asteroid'  s boulders and their surroundings have similar temperatures, with a derived thermal inertia of about 300 J m(-2) s(-0.5) K-1 (300 tiu). Contrary to predictions that the surface consists of regolith and dense boulders, this low thermal inertia suggests that the boulders are more porous than typical carbonaceous chondrites(6) and that their surroundings are covered with porous fragments more than 10 centimetres in diameter. Close-up thermal images confirm the presence of such porous fragments and the flat diurnal temperature profiles suggest a strong surface roughness effect(7,8). We also observed in the close-up thermal images boulders that are colder during the day, with thermal inertia exceeding 600 tiu, corresponding to dense boulders similar to typical carbonaceous chondrites(6). These results constrain the formation history of Ryugu: the asteroid must be a rubble pile formed from impact fragments of a parent body with microporosity(9) of approximately 30 to 50 per cent that experienced a low degree of consolidation. The dense boulders might have originated from the consolidated innermost region or they may have an exogenic origin. This high-porosity asteroid may link cosmic fluffy dust to dense celestial bodies(10).


Thermal imaging data obtained from the spacecraft Hayabusa2 reveal that the carbonaceous asteroid 162173 Ryugu is an object of unusually high porosity.


  
Global conservation of species' niches 期刊论文
NATURE, 2020, 580 (7802) : 232-+
作者:  Guo, Xiaoyan;  Aviles, Giovanni;  Liu, Yi;  Tian, Ruilin;  Unger, Bret A.;  Lin, Yu-Hsiu T.;  Wiita, Arun P.;  Xu, Ke;  Correia, M. Almira;  Kampmann, Martin
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

Environmental change is rapidly accelerating, and many species will need to adapt to survive(1). Ensuring that protected areas cover populations across a broad range of environmental conditions could safeguard the processes that lead to such adaptations(1-3). However, international conservation policies have largely neglected these considerations when setting targets for the expansion of protected areas(4). Here we show that-of 19,937 vertebrate species globally(5-8)-the representation of environmental conditions across their habitats in protected areas (hereafter, niche representation) is inadequate for 4,836 (93.1%) amphibian, 8,653 (89.5%) bird and 4,608 (90.9%) terrestrial mammal species. Expanding existing protected areas to cover these gaps would encompass 33.8% of the total land surface-exceeding the current target of 17% that has been adopted by governments. Priority locations for expanding the system of protected areas to improve niche representation occur in global biodiversity hotspots(9), including Colombia, Papua New Guinea, South Africa and southwest China, as well as across most of the major land masses of the Earth. Conversely, we also show that planning for the expansion of protected areas without explicitly considering environmental conditions would marginally reduce the land area required to 30.7%, but that this would lead to inadequate niche representation for 7,798 (39.1%) species. As the governments of the world prepare to renegotiate global conservation targets, policymakers have the opportunity to help to maintain the adaptive potential of species by considering niche representation within protected areas(1,2).


Protected areas would need to expand to 33.8% of the total land surface to adequately represent environmental conditions across the habitats of amphibians, birds and terrestrial mammals, far exceeding the current 17% target.