GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
Ecological insights from three decades of animal movement tracking across a changing Arctic 期刊论文
Science, 2020
作者:  Sarah C. Davidson;  Gil Bohrer;  Eliezer Gurarie;  Scott LaPoint;  Peter J. Mahoney;  Natalie T. Boelman;  Jan U. H. Eitel;  Laura R. Prugh;  Lee A. Vierling;  Jyoti Jennewein;  Emma Grier;  Ophélie Couriot;  Allicia P. Kelly;  Arjan J. H. Meddens;  Ruth Y. Oliver;  Roland Kays;  Martin Wikelski;  Tomas Aarvak;  Joshua T. Ackerman;  José A. Alves;  Erin Bayne;  Bryan Bedrosian;  Jerrold L. Belant;  Andrew M. Berdahl;  Alicia M. Berlin;  Dominique Berteaux;  Joël Bêty;  Dmitrijs Boiko;  Travis L. Booms;  Bridget L. Borg;  Stan Boutin;  W. Sean Boyd;  Kane Brides;  Stephen Brown;  Victor N. Bulyuk;  Kurt K. Burnham;  David Cabot;  Michael Casazza;  Katherine Christie;  Erica H. Craig;  Shanti E. Davis;  Tracy Davison;  Dominic Demma;  Christopher R. DeSorbo;  Andrew Dixon;  Robert Domenech;  Götz Eichhorn;  Kyle Elliott;  Joseph R. Evenson;  Klaus-Michael Exo;  Steven H. Ferguson;  Wolfgang Fiedler;  Aaron Fisk;  Jérôme Fort;  Alastair Franke;  Mark R. Fuller;  Stefan Garthe;  Gilles Gauthier;  Grant Gilchrist;  Petr Glazov;  Carrie E. Gray;  David Grémillet;  Larry Griffin;  Michael T. Hallworth;  Autumn-Lynn Harrison;  Holly L. Hennin;  J. Mark Hipfner;  James Hodson;  James A. Johnson;  Kyle Joly;  Kimberly Jones;  Todd E. Katzner;  Jeff W. Kidd;  Elly C. Knight;  Michael N. Kochert;  Andrea Kölzsch;  Helmut Kruckenberg;  Benjamin J. Lagassé;  Sandra Lai;  Jean-François Lamarre;  Richard B. Lanctot;  Nicholas C. Larter;  A. David M. Latham;  Christopher J. Latty;  James P. Lawler;  Don-Jean Léandri-Breton;  Hansoo Lee;  Stephen B. Lewis;  Oliver P. Love;  Jesper Madsen;  Mark Maftei;  Mark L. Mallory;  Buck Mangipane;  Mikhail Y. Markovets;  Peter P. Marra;  Rebecca McGuire;  Carol L. McIntyre;  Emily A. McKinnon;  Tricia A. Miller;  Sander Moonen;  Tong Mu;  Gerhard J. D. M. Müskens;  Janet Ng;  Kerry L. Nicholson;  Ingar Jostein Øien;  Cory Overton;  Patricia A. Owen;  Allison Patterson;  Aevar Petersen;  Ivan Pokrovsky;  Luke L. Powell;  Rui Prieto;  Petra Quillfeldt;  Jennie Rausch;  Kelsey Russell;  Sarah T. Saalfeld;  Hans Schekkerman;  Joel A. Schmutz;  Philipp Schwemmer;  Dale R. Seip;  Adam Shreading;  Mónica A. Silva;  Brian W. Smith;  Fletcher Smith;  Jeff P. Smith;  Katherine R. S. Snell;  Aleksandr Sokolov;  Vasiliy Sokolov;  Diana V Solovyeva;  Mathew S. Sorum;  Grigori Tertitski;  J. F. Therrien;  Kasper Thorup;  T. Lee Tibbitts;  Ingrid Tulp;  Brian D. Uher-Koch;  Rob S. A. van Bemmelen;  Steven Van Wilgenburg;  Andrew L. Von Duyke;  Jesse L. Watson;  Bryan D. Watts;  Judy A. Williams;  Matthew T. Wilson;  James R. Wright;  Michael A. Yates;  David J. Yurkowski;  Ramūnas Žydelis;  Mark Hebblewhite
收藏  |  浏览/下载:19/0  |  提交时间:2020/11/09
Layered nanocomposites by shear-flow-induced alignment of nanosheets 期刊论文
NATURE, 2020, 580 (7802) : 210-+
作者:  Rollie, Clare;  Chevallereau, Anne;  Watson, Bridget N. J.;  Chyou, Te-yuan;  Fradet, Olivier;  McLeod, Isobel;  Fineran, Peter C.;  Brown, Chris M.;  Gandon, Sylvain;  Westra, Edze R.
收藏  |  浏览/下载:39/0  |  提交时间:2020/07/03

Layered nanocomposites fabricated using a continuous and scalable process achieve properties exceeding those of natural nacre, the result of stiffened matrix polymer chains confined between highly aligned nanosheets.


Biological materials, such as bones, teeth and mollusc shells, are well known for their excellent strength, modulus and toughness(1-3). Such properties are attributed to the elaborate layered microstructure of inorganic reinforcing nanofillers, especially two-dimensional nanosheets or nanoplatelets, within a ductile organic matrix(4-6). Inspired by these biological structures, several assembly strategies-including layer-by-layer(4,7,8), casting(9,10), vacuum filtration(11-13) and use of magnetic fields(14,15)-have been used to develop layered nanocomposites. However, how to produce ultrastrong layered nanocomposites in a universal, viable and scalable manner remains an open issue. Here we present a strategy to produce nanocomposites with highly ordered layered structures using shear-flow-induced alignment of two-dimensional nanosheets at an immiscible hydrogel/oil interface. For example, nanocomposites based on nanosheets of graphene oxide and clay exhibit a tensile strength of up to 1,215 +/- 80 megapascals and a Young'  s modulus of 198.8 +/- 6.5 gigapascals, which are 9.0 and 2.8 times higher, respectively, than those of natural nacre (mother of pearl). When nanosheets of clay are used, the toughness of the resulting nanocomposite can reach 36.7 +/- 3.0 megajoules per cubic metre, which is 20.4 times higher than that of natural nacre  meanwhile, the tensile strength is 1,195 +/- 60 megapascals. Quantitative analysis indicates that the well aligned nanosheets form a critical interphase, and this results in the observed mechanical properties. We consider that our strategy, which could be readily extended to align a variety of two-dimensional nanofillers, could be applied to a wide range of structural composites and lead to the development of high-performance composites.


  
Control and single-shot readout of an ion embedded in a nanophotonic cavity 期刊论文
NATURE, 2020, 580 (7802) : 201-+
作者:  Rollie, Clare;  Chevallereau, Anne;  Watson, Bridget N. J.;  Chyou, Te-yuan;  Fradet, Olivier;  McLeod, Isobel;  Fineran, Peter C.;  Brown, Chris M.;  Gandon, Sylvain;  Westra, Edze R.
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

Distributing entanglement over long distances using optical networks is an intriguing macroscopic quantum phenomenon with applications in quantum systems for advanced computing and secure communication(1,2). Building quantum networks requires scalable quantum light-matter interfaces(1) based on atoms(3), ions(4) or other optically addressable qubits. Solid-state emitters(5), such as quantum dots and defects in diamond or silicon carbide(6-10), have emerged as promising candidates for such interfaces. So far, it has not been possible to scale up these systems, motivating the development of alternative platforms. A central challenge is identifying emitters that exhibit coherent optical and spin transitions while coupled to photonic cavities that enhance the light-matter interaction and channel emission into optical fibres. Rare-earth ions in crystals are known to have highly coherent 4f-4f optical and spin transitions suited to quantum storage and transduction(11-15), but only recently have single rare-earth ions been isolated(16,17) and coupled to nanocavities(18,19). The crucial next steps towards using single rare-earth ions for quantum networks are realizing long spin coherence and single-shot readout in photonic resonators. Here we demonstrate spin initialization, coherent optical and spin manipulation, and high-fidelity single-shot optical readout of the hyperfine spin state of single Yb-171(3+) ions coupled to a nanophotonic cavity fabricated in an yttrium orthovanadate host crystal. These ions have optical and spin transitions that are first-order insensitive to magnetic field fluctuations, enabling optical linewidths of less than one megahertz and spin coherence times exceeding thirty milliseconds for cavity-coupled ions, even at temperatures greater than one kelvin. The cavity-enhanced optical emission rate facilitates efficient spin initialization and single-shot readout with conditional fidelity greater than 95 per cent. These results showcase a solid-state platform based on single coherent rare-earth ions for the future quantum internet.


Single ytterbium ion qubits in nanophotonic cavities have long coherence times and can be optically read out in a single shot, establishing them as excellent candidates for optical quantum networks.


  
A new coronavirus associated with human respiratory disease in China 期刊论文
NATURE, 2020, 579 (7798) : 265-+
作者:  Rollie, Clare;  Chevallereau, Anne;  Watson, Bridget N. J.;  Chyou, Te-yuan;  Fradet, Olivier;  McLeod, Isobel;  Fineran, Peter C.;  Brown, Chris M.;  Gandon, Sylvain;  Westra, Edze R.
收藏  |  浏览/下载:56/0  |  提交时间:2020/07/03

Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health(1-3). Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing(4) of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here '  WH-Human 1'  coronavirus (and has also been referred to as '  2019-nCoV'  ). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China(5). This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.