GSTDTAP

浏览/检索结果: 共113条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
美国政府资助1.37亿美元支持太阳能技术研发 快报文章
气候变化快报,2023年第15期
作者:  董利苹
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:496/0  |  提交时间:2023/08/07
DOE  Solar Energy  
美国国家大气研究中心开发先进的太阳能预测系统 快报文章
气候变化快报,2023年第12期
作者:  王田宇 刘燕飞
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:574/0  |  提交时间:2023/06/20
solar energy forecasting  New York  NYSolarCast  solar irradiance  machine learning  
美国能源部拨款8200万美元用于太阳能制造与回收 快报文章
气候变化快报,2023年第09期
作者:  秦冰雪
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:345/0  |  提交时间:2023/05/05
Solar Manufacturing and Recycling  Clean Energy  
澳大利亚发布硅行动计划 快报文章
气候变化快报,2023年第1期
作者:  迪里努尔,刘燕飞
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:660/0  |  提交时间:2023/01/05
ASAP  solar cells  energy independence  
定量预测太阳能与风能的季节性变化规律 快报文章
资源环境快报,2022年第11期
作者:  李恒吉
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:627/0  |  提交时间:2022/06/16
Clean Energy  Solar energy  Renewable Energy  
DOE确定部落社区能效提升项目资助清单 快报文章
地球科学快报,2021年第14期
作者:  刘 学
Microsoft Word(64Kb)  |  收藏  |  浏览/下载:449/0  |  提交时间:2021/07/26
solar photovoltaics  energy technology  tribal energy projects  DOE  
DOE宣布1.3亿美元投资推进太阳能技术 快报文章
地球科学快报,2020年第23期
作者:  刘文浩
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:421/0  |  提交时间:2020/12/09
Department of Energy  Solar Technology  
Low-impact land use pathways to deep decarbonization of electricity 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (7)
作者:  Wu, Grace C.;  Leslie, Emily;  Sawyerr, Oluwafemi;  Cameron, D. Richard;  Brand, Erica;  Cohen, Brian;  Allen, Douglas;  Ochoa, Marcela;  Olson, Arne
收藏  |  浏览/下载:8/0  |  提交时间:2020/08/18
renewable energy  deep decarbonization  land use  conservation  solar energy  wind energy  siting  
新型冷却系统将太阳能面板的效率提高20% 快报文章
地球科学快报,2020年第10期
作者:  刘文浩
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:310/0  |  提交时间:2020/05/25
system  solar energy  efficiency  
Accelerated discovery of CO2 electrocatalysts using active machine learning 期刊论文
NATURE, 2020, 581 (7807) : 178-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:88/0  |  提交时间:2020/07/03

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy(1,2). Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy(3-8). Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products(9-16), and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 +/- 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction(17). Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.