GSTDTAP

浏览/检索结果: 共15条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
美研究警告气候变化将加剧传染病的传播 快报文章
气候变化快报,2024年第7期
作者:  廖 琴
Microsoft Word(27Kb)  |  收藏  |  浏览/下载:209/0  |  提交时间:2024/04/03
Climate Change  Infectious Diseases  Health  
气候变化与反刍动物传染病之间存在潜在的正反馈 快报文章
气候变化快报,2020年第21期
作者:  裴惠娟
Microsoft Word(13Kb)  |  收藏  |  浏览/下载:390/0  |  提交时间:2020/11/05
Infectious Diseases  Livestock  Climate  Vicious Cycle  
Structure of M-pro from SARS-CoV-2 and discovery of its inhibitors 期刊论文
NATURE, 2020, 582 (7811) : 289-+
作者:  Li, Nan;  Jasanoff, Alan
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

A programme of structure-assisted drug design and high-throughput screening identifies six compounds that inhibit the main protease of SARS-CoV-2, demonstrating the ability of this strategy to isolate drug leads with clinical potential.


A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019-2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19)(1-4). Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited. Here we describe the results of a programme that aimed to rapidly discover lead compounds for clinical use, by combining structure-assisted drug design, virtual drug screening and high-throughput screening. This programme focused on identifying drug leads that target main protease (M-pro) of SARS-CoV-2: M-pro is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-2(5,6). We identified a mechanism-based inhibitor (N3) by computer-aided drug design, and then determined the crystal structure of M-pro of SARS-CoV-2 in complex with this compound. Through a combination of structure-based virtual and high-throughput screening, we assayed more than 10,000 compounds-including approved drugs, drug candidates in clinical trials and other pharmacologically active compounds-as inhibitors of M-pro. Six of these compounds inhibited M-pro, showing half-maximal inhibitory concentration values that ranged from 0.67 to 21.4 mu M. One of these compounds (ebselen) also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of our screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available.


  
A new coronavirus associated with human respiratory disease in China 期刊论文
NATURE, 2020, 579 (7798) : 265-+
作者:  Rollie, Clare;  Chevallereau, Anne;  Watson, Bridget N. J.;  Chyou, Te-yuan;  Fradet, Olivier;  McLeod, Isobel;  Fineran, Peter C.;  Brown, Chris M.;  Gandon, Sylvain;  Westra, Edze R.
收藏  |  浏览/下载:56/0  |  提交时间:2020/07/03

Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health(1-3). Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing(4) of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here '  WH-Human 1'  coronavirus (and has also been referred to as '  2019-nCoV'  ). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China(5). This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.


  
Pathogen spillover during land conversion 期刊论文
ECOLOGY LETTERS, 2018, 21 (4) : 471-483
作者:  Faust, Christina L.;  McCallum, Hamish I.;  Bloomfield, Laura S. P.;  Gottdenker, Nicole L.;  Gillespie, Thomas R.;  Torney, Colin J.;  Dobson, Andrew P.;  Plowright, Raina K.
收藏  |  浏览/下载:7/0  |  提交时间:2019/04/09
emerging infectious diseases  interspecies transmission  land use and land cover change  
9th Annual Global Disaster Relief & Development Summit 会议
Washington, United States, 会议类型: Conference, 2017