GSTDTAP

浏览/检索结果: 共10条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Quantum computational advantage using photons 期刊论文
Science, 2020
作者:  Han-Sen Zhong;  Hui Wang;  Yu-Hao Deng;  Ming-Cheng Chen;  Li-Chao Peng;  Yi-Han Luo;  Jian Qin;  Dian Wu;  Xing Ding;  Yi Hu;  Peng Hu;  Xiao-Yan Yang;  Wei-Jun Zhang;  Hao Li;  Yuxuan Li;  Xiao Jiang;  Lin Gan;  Guangwen Yang;  Lixing You;  Zhen Wang;  Li Li;  Nai-Le Liu;  Chao-Yang Lu;  Jian-Wei Pan
收藏  |  浏览/下载:27/0  |  提交时间:2020/12/22
Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques 期刊论文
Science, 2020
作者:  Wei Deng;  Linlin Bao;  Jiangning Liu;  Chong Xiao;  Jiayi Liu;  Jing Xue;  Qi Lv;  Feifei Qi;  Hong Gao;  Pin Yu;  Yanfeng Xu;  Yajin Qu;  Fengdi Li;  Zhiguang Xiang;  Haisheng Yu;  Shuran Gong;  Mingya Liu;  Guanpeng Wang;  Shunyi Wang;  Zhiqi Song;  Ying Liu;  Wenjie Zhao;  Yunlin Han;  Linna Zhao;  Xing Liu;  Qiang Wei;  Chuan Qin
收藏  |  浏览/下载:11/0  |  提交时间:2020/08/18
Development of an inactivated vaccine candidate for SARS-CoV-2 期刊论文
Science, 2020
作者:  Qiang Gao;  Linlin Bao;  Haiyan Mao;  Lin Wang;  Kangwei Xu;  Minnan Yang;  Yajing Li;  Ling Zhu;  Nan Wang;  Zhe Lv;  Hong Gao;  Xiaoqin Ge;  Biao Kan;  Yaling Hu;  Jiangning Liu;  Fang Cai;  Deyu Jiang;  Yanhui Yin;  Chengfeng Qin;  Jing Li;  Xuejie Gong;  Xiuyu Lou;  Wen Shi;  Dongdong Wu;  Hengming Zhang;  Lang Zhu;  Wei Deng;  Yurong Li;  Jinxing Lu;  Changgui Li;  Xiangxi Wang;  Weidong Yin;  Yanjun Zhang;  Chuan Qin
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/06
Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol 期刊论文
Science, 2020
作者:  Lu Zhang;  Yao Zhao;  Yan Gao;  Lijie Wu;  Ruogu Gao;  Qi Zhang;  Yinan Wang;  Chengyao Wu;  Fangyu Wu;  Sudagar S. Gurcha;  Natacha Veerapen;  Sarah M. Batt;  Wei Zhao;  Ling Qin;  Xiuna Yang;  Manfu Wang;  Yan Zhu;  Bing Zhang;  Lijun Bi;  Xian’en Zhang;  Haitao Yang;  Luke W. Guddat;  Wenqing Xu;  Quan Wang;  Jun Li;  Gurdyal S. Besra;  Zihe Rao
收藏  |  浏览/下载:9/0  |  提交时间:2020/06/16
Winter climate shapes spring phytoplankton development in non‐ice‐covered lakes: Subtropical Lake Taihu as an example 期刊论文
Water Resources Research, 2020
作者:  Jianming Deng;  Wei Zhang;  Boqiang Qin;  Yunlin Zhang;  Nico Salmaso;  Erik Jeppesen
收藏  |  浏览/下载:7/0  |  提交时间:2020/05/13
The water lily genome and the early evolution of flowering plants 期刊论文
NATURE, 2020, 577 (7788) : 79-+
作者:  Zhang, Liangsheng;  Chen, Fei;  Zhang, Xingtan;  Li, Zhen;  Zhao, Yiyong;  Lohaus, Rolf;  Chang, Xiaojun;  Dong, Wei;  Ho, Simon Y. W.;  Liu, Xing;  Song, Aixia;  Chen, Junhao;  Guo, Wenlei;  Wang, Zhengjia;  Zhuang, Yingyu;  Wang, Haifeng;  Chen, Xuequn;  Hu, Juan;  Liu, Yanhui;  Qin, Yuan;  Wang, Kai;  Dong, Shanshan;  Liu, Yang;  Zhang, Shouzhou;  Yu, Xianxian;  Wu, Qian;  Wang, Liangsheng;  Yan, Xueqing;  Jiao, Yuannian;  Kong, Hongzhi;  Zhou, Xiaofan;  Yu, Cuiwei;  Chen, Yuchu;  Li, Fan;  Wang, Jihua;  Chen, Wei;  Chen, Xinlu;  Jia, Qidong;  Zhang, Chi;  Jiang, Yifan;  Zhang, Wanbo;  Liu, Guanhua;  Fu, Jianyu;  Chen, Feng;  Ma, Hong;  Van de Peer, Yves;  Tang, Haibao
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms(1-3). Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.


  
Recycling and metabolic flexibility dictate life in the lower oceanic crust 期刊论文
NATURE, 2020, 579 (7798) : 250-+
作者:  Zhou, Peng;  Yang, Xing-Lou;  Wang, Xian-Guang;  Hu, Ben;  Zhang, Lei;  Zhang, Wei;  Si, Hao-Rui;  Zhu, Yan;  Li, Bei;  Huang, Chao-Lin;  Chen, Hui-Dong;  Chen, Jing;  Luo, Yun;  Guo, Hua;  Jiang, Ren-Di;  Liu, Mei-Qin;  Chen, Ying;  Shen, Xu-Rui;  Wang, Xi;  Zheng, Xiao-Shuang;  Zhao, Kai;  Chen, Quan-Jiao;  Deng, Fei;  Liu, Lin-Lin;  Yan, Bing;  Zhan, Fa-Xian;  Wang, Yan-Yi;  Xiao, Geng-Fu;  Shi, Zheng-Li
收藏  |  浏览/下载:37/0  |  提交时间:2020/05/13

The lithified lower oceanic crust is one of Earth'  s last biological frontiers as it is difficult to access. It is challenging for microbiota that live in marine subsurface sediments or igneous basement to obtain sufficient carbon resources and energy to support growth(1-3) or to meet basal power requirements(4) during periods of resource scarcity. Here we show how limited and unpredictable sources of carbon and energy dictate survival strategies used by low-biomass microbial communities that live 10-750 m below the seafloor at Atlantis Bank, Indian Ocean, where Earth'  s lower crust is exposed at the seafloor. Assays of enzyme activities, lipid biomarkers, marker genes and microscopy indicate heterogeneously distributed and viable biomass with ultralow cell densities (fewer than 2,000 cells per cm(3)). Expression of genes involved in unexpected heterotrophic processes includes those with a role in the degradation of polyaromatic hydrocarbons, use of polyhydroxyalkanoates as carbon-storage molecules and recycling of amino acids to produce compounds that can participate in redox reactions and energy production. Our study provides insights into how microorganisms in the plutonic crust are able to survive within fractures or porous substrates by coupling sources of energy to organic and inorganic carbon resources that are probably delivered through the circulation of subseafloor fluids or seawater.


  
Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (9) : 4823-4830
作者:  Zhang, Yao;  Qin, Wei;  Hou, Lei;  Zakem, Emily J.;  Wan, Xianhui;  Zhao, Zihao;  Liu, Li;  Hunt, Kristopher A.;  Jiao, Nianzhi;  Kao, Shuh-Ji;  Tang, Kai;  Xie, Xiabing;  Shen, Jiaming;  Li, Yufang;  Chen, Mingming;  Dai, Xiaofeng;  Liu, Chang;  Deng, Wenchao;  Dai, Minhan;  Ingalls, Anitra E.;  Stahl, David A.;  Herndl, Gerhard J.
收藏  |  浏览/下载:13/0  |  提交时间:2020/05/13
nitrification  dark ocean  nitrogen flux  carbon fixation  homeostasis  
Projected near-term changes of temperature extremes in Europe and China under different aerosol emissions 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (3)
作者:  Luo, Feifei;  Wilcox, Laura;  Dong, Buwen;  Su, Qin;  Chen, Wei;  Dunstone, Nick;  Li, Shuanglin;  Gao, Yongqi
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
temperature extremes  anthropogenic aerosols  projection  HadGEM3-GC2  
B cells and tertiary lymphoid structures promote immunotherapy response 期刊论文
NATURE, 2020, 577 (7791) : 549-+
作者:  Zhang, Liangsheng;  Chen, Fei;  Zhang, Xingtan;  Li, Zhen;  Zhao, Yiyong;  Lohaus, Rolf;  Chang, Xiaojun;  Dong, Wei;  Ho, Simon Y. W.;  Liu, Xing;  Song, Aixia;  Chen, Junhao;  Guo, Wenlei;  Wang, Zhengjia;  Zhuang, Yingyu;  Wang, Haifeng;  Chen, Xuequn;  Hu, Juan;  Liu, Yanhui;  Qin, Yuan;  Wang, Kai;  Dong, Shanshan;  Liu, Yang;  Zhang, Shouzhou;  Yu, Xianxian;  Wu, Qian;  Wang, Liangsheng;  Yan, Xueqing;  Jiao, Yuannian;  Kong, Hongzhi;  Zhou, Xiaofan;  Yu, Cuiwei;  Chen, Yuchu;  Li, Fan;  Wang, Jihua;  Chen, Wei;  Chen, Xinlu;  Jia, Qidong;  Zhang, Chi;  Jiang, Yifan;  Zhang, Wanbo;  Liu, Guanhua;  Fu, Jianyu;  Chen, Feng;  Ma, Hong;  Van de Peer, Yves;  Tang, Haibao
收藏  |  浏览/下载:41/0  |  提交时间:2020/07/03

Multiomic profiling of several cohorts of patients treated with immune checkpoint blockade highlights the presence and potential role of B cells and tertiary lymphoid structures in promoting therapy response.


Treatment with immune checkpoint blockade (ICB) has revolutionized cancer therapy. Until now, predictive biomarkers(1-10) and strategies to augment clinical response have largely focused on the T cell compartment. However, other immune subsets may also contribute to anti-tumour immunity(11-15), although these have been less well-studied in ICB treatment(16). A previously conducted neoadjuvant ICB trial in patients with melanoma showed via targeted expression profiling(17) that B cell signatures were enriched in the tumours of patients who respond to treatment versus non-responding patients. To build on this, here we performed bulk RNA sequencing and found that B cell markers were the most differentially expressed genes in the tumours of responders versus non-responders. Our findings were corroborated using a computational method (MCP-counter(18)) to estimate the immune and stromal composition in this and two other ICB-treated cohorts (patients with melanoma and renal cell carcinoma). Histological evaluation highlighted the localization of B cells within tertiary lymphoid structures. We assessed the potential functional contributions of B cells via bulk and single-cell RNA sequencing, which demonstrate clonal expansion and unique functional states of B cells in responders. Mass cytometry showed that switched memory B cells were enriched in the tumours of responders. Together, these data provide insights into the potential role of B cells and tertiary lymphoid structures in the response to ICB treatment, with implications for the development of biomarkers and therapeutic targets.