GSTDTAP  > 气候变化
DOI10.1126/science.abe8770
Quantum computational advantage using photons
Han-Sen Zhong; Hui Wang; Yu-Hao Deng; Ming-Cheng Chen; Li-Chao Peng; Yi-Han Luo; Jian Qin; Dian Wu; Xing Ding; Yi Hu; Peng Hu; Xiao-Yan Yang; Wei-Jun Zhang; Hao Li; Yuxuan Li; Xiao Jiang; Lin Gan; Guangwen Yang; Lixing You; Zhen Wang; Li Li; Nai-Le Liu; Chao-Yang Lu; Jian-Wei Pan
2020-12-18
发表期刊Science
出版年2020
英文摘要Quantum computational advantage or supremacy is a long-anticipated milestone toward practical quantum computers. Recent work claimed to have reached this point, but subsequent work managed to speed up the classical simulation and pointed toward a sample size–dependent loophole. Quantum computational advantage, rather than being a one-shot experimental proof, will be the result of a long-term competition between quantum devices and classical simulation. Zhong et al. sent 50 indistinguishable single-mode squeezed states into a 100-mode ultralow-loss interferometer and sampled the output using 100 high-efficiency single-photon detectors. By obtaining up to 76-photon coincidence, yielding a state space dimension of about 1030, they measured a sampling rate that is about 1014-fold faster than using state-of-the-art classical simulation strategies and supercomputers. Science , this issue p. [1460][1] Quantum computers promise to perform certain tasks that are believed to be intractable to classical computers. Boson sampling is such a task and is considered a strong candidate to demonstrate the quantum computational advantage. We performed Gaussian boson sampling by sending 50 indistinguishable single-mode squeezed states into a 100-mode ultralow-loss interferometer with full connectivity and random matrix—the whole optical setup is phase-locked—and sampling the output using 100 high-efficiency single-photon detectors. The obtained samples were validated against plausible hypotheses exploiting thermal states, distinguishable photons, and uniform distribution. The photonic quantum computer, Jiuzhang , generates up to 76 output photon clicks, which yields an output state-space dimension of 1030 and a sampling rate that is faster than using the state-of-the-art simulation strategy and supercomputers by a factor of ~1014. [1]: /lookup/doi/10.1126/science.abe8770
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/308366
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Han-Sen Zhong,Hui Wang,Yu-Hao Deng,et al. Quantum computational advantage using photons[J]. Science,2020.
APA Han-Sen Zhong.,Hui Wang.,Yu-Hao Deng.,Ming-Cheng Chen.,Li-Chao Peng.,...&Jian-Wei Pan.(2020).Quantum computational advantage using photons.Science.
MLA Han-Sen Zhong,et al."Quantum computational advantage using photons".Science (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Han-Sen Zhong]的文章
[Hui Wang]的文章
[Yu-Hao Deng]的文章
百度学术
百度学术中相似的文章
[Han-Sen Zhong]的文章
[Hui Wang]的文章
[Yu-Hao Deng]的文章
必应学术
必应学术中相似的文章
[Han-Sen Zhong]的文章
[Hui Wang]的文章
[Yu-Hao Deng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。