GSTDTAP

浏览/检索结果: 共54条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Understanding the Interfacial Behavior of Typical Perfluorocarboxylic Acids at Surfactant-Coated Aqueous Interfaces 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (13)
作者:  Cheng, Shumin;  Du, Lin;  George, Christian
收藏  |  浏览/下载:14/0  |  提交时间:2020/08/18
Langmuir film  Lipid  Mixed monolayer  Air-water interface  sea spray aerosol  Perfluorocarboxylic acids  
Enhanced ferroelectricity in ultrathin films grown directly on silicon 期刊论文
NATURE, 2020, 580 (7804) : 478-+
作者:  Arnold, Fabian M.;  Weber, Miriam S.;  Gonda, Imre;  Gallenito, Marc J.;  Adenau, Sophia;  Egloff, Pascal;  Zimmermann, Iwan;  Hutter, Cedric A. J.;  Huerlimann, Lea M.;  Peters, Eike E.;  Piel, Joern;  Meloni, Gabriele;  Medalia, Ohad;  Seeger, Markus A.
收藏  |  浏览/下载:49/0  |  提交时间:2020/07/03

Ultrathin ferroelectric materials could potentially enable low-power perovskite ferroelectric tetragonality logic and nonvolatile memories(1,2). As ferroelectric materials are made thinner, however, the ferroelectricity is usually suppressed. Size effects in ferroelectrics have been thoroughly investigated in perovskite oxides-the archetypal ferroelectric system(3). Perovskites, however, have so far proved unsuitable for thickness scaling and integration with modern semiconductor processes(4). Here we report ferroelectricity in ultrathin doped hafnium oxide (HfO2), a fluorite-structure oxide grown by atomic layer deposition on silicon. We demonstrate the persistence of inversion symmetry breaking and spontaneous, switchable polarization down to a thickness of one nanometre. Our results indicate not only the absence of a ferroelectric critical thickness but also enhanced polar distortions as film thickness is reduced, unlike in perovskite ferroelectrics. This approach to enhancing ferroelectricity in ultrathin layers could provide a route towards polarization-driven memories and ferroelectric-based advanced transistors. This work shifts the search for the fundamental limits of ferroelectricity to simpler transition-metal oxide systems-that is, from perovskite-derived complex oxides to fluorite-structure binary oxides-in which '  reverse'  size effects counterintuitively stabilize polar symmetry in the ultrathin regime.


Enhanced switchable ferroelectric polarization is achieved in doped hafnium oxide films grown directly onto silicon using low-temperature atomic layer deposition, even at thicknesses of just one nanometre.


  
Mapping anthropogenic mineral generation in China and its implications for a circular economy 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Zeng, Xianlai;  Ali, Saleem H.;  Tian, Jinping;  Li, Jinhui
收藏  |  浏览/下载:14/0  |  提交时间:2020/05/13
Layered nanocomposites by shear-flow-induced alignment of nanosheets 期刊论文
NATURE, 2020, 580 (7802) : 210-+
作者:  Rollie, Clare;  Chevallereau, Anne;  Watson, Bridget N. J.;  Chyou, Te-yuan;  Fradet, Olivier;  McLeod, Isobel;  Fineran, Peter C.;  Brown, Chris M.;  Gandon, Sylvain;  Westra, Edze R.
收藏  |  浏览/下载:39/0  |  提交时间:2020/07/03

Layered nanocomposites fabricated using a continuous and scalable process achieve properties exceeding those of natural nacre, the result of stiffened matrix polymer chains confined between highly aligned nanosheets.


Biological materials, such as bones, teeth and mollusc shells, are well known for their excellent strength, modulus and toughness(1-3). Such properties are attributed to the elaborate layered microstructure of inorganic reinforcing nanofillers, especially two-dimensional nanosheets or nanoplatelets, within a ductile organic matrix(4-6). Inspired by these biological structures, several assembly strategies-including layer-by-layer(4,7,8), casting(9,10), vacuum filtration(11-13) and use of magnetic fields(14,15)-have been used to develop layered nanocomposites. However, how to produce ultrastrong layered nanocomposites in a universal, viable and scalable manner remains an open issue. Here we present a strategy to produce nanocomposites with highly ordered layered structures using shear-flow-induced alignment of two-dimensional nanosheets at an immiscible hydrogel/oil interface. For example, nanocomposites based on nanosheets of graphene oxide and clay exhibit a tensile strength of up to 1,215 +/- 80 megapascals and a Young'  s modulus of 198.8 +/- 6.5 gigapascals, which are 9.0 and 2.8 times higher, respectively, than those of natural nacre (mother of pearl). When nanosheets of clay are used, the toughness of the resulting nanocomposite can reach 36.7 +/- 3.0 megajoules per cubic metre, which is 20.4 times higher than that of natural nacre  meanwhile, the tensile strength is 1,195 +/- 60 megapascals. Quantitative analysis indicates that the well aligned nanosheets form a critical interphase, and this results in the observed mechanical properties. We consider that our strategy, which could be readily extended to align a variety of two-dimensional nanofillers, could be applied to a wide range of structural composites and lead to the development of high-performance composites.


  
Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide 期刊论文
NATURE, 2020, 578 (7796) : 545-+
作者:  Kum, Hyun S.;  Lee, Hyungwoo;  Kim, Sungkyu;  Lindemann, Shane;  Kong, Wei;  Qiao, Kuan;  Chen, Peng;  Irwin, Julian;  Lee, June Hyuk;  Xie, Saien;  Subramanian, Shruti;  Shim, Jaewoo;  Bae, Sang-Hoon;  Choi, Chanyeol;  Ranno, Luigi;  Seo, Seungju;  Lee, Sangho;  Bauer, Jackson;  Li, Huashan;  Lee, Kyusang;  Robinson, Joshua A.;  Ross, Caroline A.;  Schlom, Darrell G.;  Rzchowski, Mark S.;  Eom, Chang-Beom;  Kim, Jeehwan
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Chirality is ubiquitous in nature, and populations of opposite chiralities are surprisingly asymmetric at fundamental levels(1,2). Examples range from parity violation in the subatomic weak force to homochirality in biomolecules. The ability to achieve chirality-selective synthesis (chiral induction) is of great importance in stereochemistry, molecular biology and pharmacology(2). In condensed matter physics, a crystalline electronic system is geometrically chiral when it lacks mirror planes, space-inversion centres or rotoinversion axes(1). Typically, geometrical chirality is predefined by the chiral lattice structure of a material, which is fixed on formation of the crystal. By contrast, in materials with gyrotropic order(3-6), electrons spontaneously organize themselves to exhibit macroscopic chirality in an originally achiral lattice. Although such order-which has been proposed as the quantum analogue of cholesteric liquid crystals-has attracted considerable interest(3-15), no clear observation or manipulation of gyrotropic order has been achieved so far. Here we report the realization of optical chiral induction and the observation of a gyrotropically ordered phase in the transition-metal dichalcogenide semimetal 1T-TiSe2. We show that shining mid-infrared circularly polarized light on 1T-TiSe2 while cooling it below the critical temperature leads to the preferential formation of one chiral domain. The chirality of this state is confirmed by the measurement of an out-of-plane circular photogalvanic current, the direction of which depends on the optical induction. Although the role of domain walls requires further investigation with local probes, the methodology demonstrated here can be applied to realize and control chiral electronic phases in other quantum materials(4,16).


Optical chiral induction and spontaneous gyrotropic electronic order are realized in the transition-metal chalcogenide 1T-TiSe2 by using illumination with mid-infrared circularly polarized light and simultaneous cooling below the critical temperature.


  
The role of cement service-life on the efficient use of resources 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (2)
作者:  Miller, Sabbie A.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/02
cement  concrete  in-use stock  dynamic materials flow analysis  longevity in-service  resource efficiency  
A Mathematical Model for the Release, Transport, and Retention of Per- and Polyfluoroalkyl Substances (PFAS) in the Vadose Zone 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (2)
作者:  Guo, Bo;  Zeng, Jicai;  Brusseau, Mark L.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
PFAS  PFOS  air-water interface  variably saturated flow  retardation  transport  
In situ NMR metrology reveals reaction mechanisms in redox flow batteries 期刊论文
NATURE, 2020, 579 (7798) : 224-+
作者:  Ma, Jianfei;  You, Xin;  Sun, Shan;  Wang, Xiaoxiao;  Qin, Song;  Sui, Sen-Fang
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Large-scale energy storage is becoming increasingly critical to balancing renewable energy production and consumption(1). Organic redox flow batteries, made from inexpensive and sustainable redox-active materials, are promising storage technologies that are cheaper and less environmentally hazardous than vanadium-based batteries, but they have shorter lifetimes and lower energy density(2,3). Thus, fundamental insight at the molecular level is required to improve performance(4,5). Here we report two in situ nuclear magnetic resonance (NMR) methods of studying redox flow batteries, which are applied to two redox-active electrolytes: 2,6-dihydroxyanthraquinone (DHAQ) and 4,4 '  -((9,10-anthraquinone-2,6-diyl)dioxy) dibutyrate (DBEAQ). In the first method, we monitor the changes in the H-1 NMR shift of the liquid electrolyte as it flows out of the electrochemical cell. In the second method, we observe the changes that occur simultaneously in the positive and negative electrodes in the full electrochemical cell. Using the bulk magnetization changes (observed via the H-1 NMR shift of the water resonance) and the line broadening of the H-1 shifts of the quinone resonances as a function of the state of charge, we measure the potential differences of the two single-electron couples, identify and quantify the rate of electron transfer between the reduced and oxidized species, and determine the extent of electron delocalization of the unpaired spins over the radical anions. These NMR techniques enable electrolyte decomposition and battery self-discharge to be explored in real time, and show that DHAQ is decomposed electrochemically via a reaction that can be minimized by limiting the voltage used on charging. We foresee applications of these NMR methods in understanding a wide range of redox processes in flow and other electrochemical systems.


  
High-pressure strengthening in ultrafine-grained metals 期刊论文
NATURE, 2020
作者:  Yoshida, Kenichi;  Gowers, Kate H. C.;  Lee-Six, Henry;  Chandrasekharan, Deepak P.;  Coorens, Tim;  Maughan, Elizabeth F.;  Beal, Kathryn;  Menzies, Andrew;  Millar, Fraser R.;  Anderson, Elizabeth;  Clarke, Sarah E.;  Pennycuick, Adam;  Thakrar, Ricky M.;  Butler, Colin R.
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

High-pressure diamond anvil cell experiments reveal that compression strengthening of nanocrystalline nickel increases as its grain sizes decrease to 3 nanometres, owing to dislocation hardening and suppression of grain boundary plasticity.


The Hall-Petch relationship, according to which the strength of a metal increases as the grain size decreases, has been reported to break down at a critical grain size of around 10 to 15 nanometres(1,2). As the grain size decreases beyond this point, the dominant mechanism of deformation switches from a dislocation-mediated process to grain boundary sliding, leading to material softening. In one previous approach, stabilization of grain boundaries through relaxation and molybdenum segregation was used to prevent this softening effect in nickel-molybdenum alloys with grain sizes below 10 nanometres(3). Here we track in situ the yield stress and deformation texturing of pure nickel samples of various average grain sizes using a diamond anvil cell coupled with radial X-ray diffraction. Our high-pressure experiments reveal continuous strengthening in samples with grain sizes from 200 nanometres down to 3 nanometres, with the strengthening enhanced (rather than reduced) at grain sizes smaller than 20 nanometres. We achieve a yield strength of approximately 4.2 gigapascals in our 3-nanometre-grain-size samples, ten times stronger than that of a commercial nickel material. A maximum flow stress of 10.2 gigapascals is obtained in nickel of grain size 3 nanometres for the pressure range studied here. We see similar patterns of compression strengthening in gold and palladium samples down to the smallest grain sizes. Simulations and transmission electron microscopy reveal that the high strength observed in nickel of grain size 3 nanometres is caused by the superposition of strengthening mechanisms: both partial and full dislocation hardening plus suppression of grain boundary plasticity. These insights contribute to the ongoing search for ultrastrong metals via materials engineering.


  
Dualities and non-Abelian mechanics 期刊论文
NATURE, 2020, 577 (7792) : 636-+
作者:  Song, Xinyang;  Sun, Ximei;  Oh, Sungwhan F.;  Wu, Meng;  Zhang, Yanbo;  Zheng, Wen;  Geva-Zatorsky, Naama;  Jupp, Ray;  Mathis, Diane;  Benoist, Christophe;  Kasper, Dennis L.
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

Dualities-mathematical mappings between different systems-can act as hidden symmetries that enable materials design beyond that suggested by crystallographic space groups.


Dualities are mathematical mappings that reveal links between apparently unrelated systems in virtually every branch of physics(1-8). Systems mapped onto themselves by a duality transformation are called self-dual and exhibit remarkable properties, as exemplified by the scale invariance of an Ising magnet at the critical point. Here we show how dualities can enhance the symmetries of a dynamical matrix (or Hamiltonian), enabling the design of metamaterials with emergent properties that escape a standard group theory analysis. As an illustration, we consider twisted kagome lattices(9-15), reconfigurable mechanical structures that change shape by means of a collapse mechanism(9). We observe that pairs of distinct configurations along the mechanism exhibit the same vibrational spectrum and related elastic moduli. We show that these puzzling properties arise from a duality between pairs of configurations on either side of a mechanical critical point. The critical point corresponds to a self-dual structure with isotropic elasticity even in the absence of spatial symmetries and a twofold-degenerate spectrum over the entire Brillouin zone. The spectral degeneracy originates from a version of Kramers'  theorem(16,17) in which fermionic time-reversal invariance is replaced by a hidden symmetry emerging at the self-dual point. The normal modes of the self-dual systems exhibit non-Abelian geometric phases(18,19) that affect the semiclassical propagation of wavepackets(20), leading to non-commuting mechanical responses. Our results hold promise for holonomic computation(21) and mechanical spintronics by allowing on-the-fly manipulation of synthetic spins carried by phonons.