GSTDTAP

浏览/检索结果: 共9条,第1-9条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Molecular tuning of CO2-to-ethylene conversion 期刊论文
NATURE, 2020, 577 (7791) : 509-+
作者:  Li, Fengwang;  39;Brien, Colin P.
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

The electrocatalytic reduction of carbon dioxide, powered by renewable electricity, to produce valuable fuels and feedstocks provides a sustainable and carbon-neutral approach to the storage of energy produced by intermittent renewable sources(1). However, the highly selective generation of economically desirable products such as ethylene from the carbon dioxide reduction reaction (CO2RR) remains a challenge(2). Tuning the stabilities of intermediates to favour a desired reaction pathway can improve selectivity(3-5), and this has recently been explored for the reaction on copper by controlling morphology(6), grain boundaries(7), facets(8), oxidation state(9) and dopants(10). Unfortunately, the Faradaic efficiency for ethylene is still low in neutral media (60 per cent at a partial current density of 7 milliamperes per square centimetre in the best catalyst reported so far(9)), resulting in a low energy efficiency. Here we present a molecular tuning strategy-the functionalization of the surface of electrocatalysts with organic molecules-that stabilizes intermediates for more selective CO2RR to ethylene. Using electrochemical, operando/in situ spectroscopic and computational studies, we investigate the influence of a library of molecules, derived by electro-dimerization of arylpyridiniums(11), adsorbed on copper. We find that the adhered molecules improve the stabilization of an '  atop-bound'  CO intermediate (that is, an intermediate bound to a single copper atom), thereby favouring further reduction to ethylene. As a result of this strategy, we report the CO2RR to ethylene with a Faradaic efficiency of 72 per cent at a partial current density of 230 milliamperes per square centimetre in a liquid-electrolyte flow cell in a neutral medium. We report stable ethylene electrosynthesis for 190 hours in a system based on a membrane-electrode assembly that provides a full-cell energy efficiency of 20 per cent. We anticipate that this may be generalized to enable molecular strategies to complement heterogeneous catalysts by stabilizing intermediates through local molecular tuning.


Electrocatalytic reduction of CO2 over copper can be made highly selective by '  tuning'  the copper surface with adsorbed organic molecules to stabilize intermediates for carbon-based fuels such as ethylene


  
Accelerated discovery of CO2 electrocatalysts using active machine learning 期刊论文
NATURE, 2020, 581 (7807) : 178-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:88/0  |  提交时间:2020/07/03

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy(1,2). Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy(3-8). Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products(9-16), and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 +/- 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction(17). Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.


  
Boundaries transformed in pure metals 期刊论文
NATURE, 2020, 579 (7799) : 350-351
作者:  Ledford, Heidi
收藏  |  浏览/下载:2/0  |  提交时间:2020/07/03

Interfaces between the tiny crystal grains that make up solid copper have been shown to change from one ordered phase to another, independently of the phase adopted by the crystals, opening up prospects for materials development.


Polymorphs of grain boundaries in copper visualized and modelled.


  
Observations of grain-boundary phase transformations in an elemental metal 期刊论文
NATURE, 2020, 579 (7799) : 375-+
作者:  Valente, Luis;  Phillimore, Albert B.;  Melo, Martim;  Warren, Ben H.;  Clegg, Sonya M.;  Havenstein, Katja;  Tiedemann, Ralph;  Illera, Juan Carlos;  Thebaud, Christophe;  Aschenbach, Tina;  Etienne, Rampal S.
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Atomic-resolution observations combined with simulations show that grain boundaries within elemental copper undergo temperature-induced solid-state phase transformation to different structures  grain boundary phases can also coexist and are kinetically trapped structures.


The theory of grain boundary (the interface between crystallites, GB) structure has a long history(1) and the concept of GBs undergoing phase transformations was proposed 50 years ago(2,3). The underlying assumption was that multiple stable and metastable states exist for different GB orientations(4-6). The terminology '  complexion'  was recently proposed to distinguish between interfacial states that differ in any equilibrium thermodynamic property(7). Different types of complexion and transitions between complexions have been characterized, mostly in binary or multicomponent systems(8-19). Simulations have provided insight into the phase behaviour of interfaces and shown that GB transitions can occur in many material systems(20-24). However, the direct experimental observation and transformation kinetics of GBs in an elemental metal have remained elusive. Here we demonstrate atomic-scale GB phase coexistence and transformations at symmetric and asymmetric [111 over bar ] tilt GBs in elemental copper. Atomic-resolution imaging reveals the coexistence of two different structures at sigma 19b GBs (where sigma 19 is the density of coincident sites and b is a GB variant), in agreement with evolutionary GB structure search and clustering analysis(21,25,26). We also use finite-temperature molecular dynamics simulations to explore the coexistence and transformation kinetics of these GB phases. Our results demonstrate how GB phases can be kinetically trapped, enabling atomic-scale room-temperature observations. Our work paves the way for atomic-scale in situ studies of metallic GB phase transformations, which were previously detected only indirectly(9,15,27-29), through their influence on abnormal grain growth, non-Arrhenius-type diffusion or liquid metal embrittlement.


  
Copper-mediated synthesis of drug-like bicyclopentanes 期刊论文
NATURE, 2020, 580 (7802) : 220-+
作者:  Canavelli, Pierre;  Islam, Saidul;  Powner, Matthew W.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Multicomponent reactions are relied on in both academic and industrial synthetic organic chemistry owing to their step- and atom-economy advantages over traditional synthetic sequences(1). Recently, bicyclo[1.1.1]pentane (BCP) motifs have become valuable as pharmaceutical bioisosteres of benzene rings, and in particular 1,3-disubstituted BCP moieties have become widely adopted in medicinal chemistry as para-phenyl ring replacements(2). These structures are often generated from [1.1.1]propellane via opening of the internal C-C bond through the addition of either radicals or metal-based nucleophiles(3-13). The resulting propellane-addition adducts are then transformed to the requisite polysubstituted BCP compounds via a range of synthetic sequences that traditionally involve multiple chemical steps. Although this approach has been effective so far, a multicomponent reaction that enables single-step access to complex and diverse polysubstituted drug-like BCP products would be more time efficient compared to current stepwise approaches. Here we report a one-step three-component radical coupling of [1.1.1]propellane to afford diverse functionalized bicyclopentanes using various radical precursors and heteroatom nucleophiles via a metallaphotoredox catalysis protocol. This copper-mediated reaction operates on short timescales (five minutes to one hour) across multiple (more than ten) nucleophile classes and can accommodate a diverse array of radical precursors, including those that generate alkyl, alpha-acyl, trifluoromethyl and sulfonyl radicals. This method has been used to rapidly prepare BCP analogues of known pharmaceuticals, one of which is substantially more metabolically stable than its commercial progenitor.


A one-step, three-component radical coupling of [1.1.1]propellane by a photoredox reaction mediated by a copper catalyst produces drug-like bicyclopentanes.


  
Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111) 期刊论文
NATURE, 2020, 579 (7798) : 219-+
作者:  Luong, Duy X.;  Bets, Ksenia V.;  Algozeeb, Wala Ali;  Stanford, Michael G.;  Kittrell, Carter;  Chen, Weiyin;  Salvatierra, Rodrigo V.;  Ren, Muqing;  McHugh, Emily A.;  Advincula, Paul A.;  Wang, Zhe;  Bhatt, Mahesh;  Guo, Hua;  Mancevski, Vladimir;  Shahsavari, Rouzbeh
收藏  |  浏览/下载:79/0  |  提交时间:2020/07/03

Ultrathin two-dimensional (2D) semiconducting layered materials offer great potential for extending Moore'  s law of the number of transistors in an integrated circuit(1). One key challenge with 2D semiconductors is to avoid the formation of charge scattering and trap sites from adjacent dielectrics. An insulating van der Waals layer of hexagonal boron nitride (hBN) provides an excellent interface dielectric, efficiently reducing charge scattering(2,3). Recent studies have shown the growth of single-crystal hBN films on molten gold surfaces(4) or bulk copper foils(5). However, the use of molten gold is not favoured by industry, owing to its high cost, cross-contamination and potential issues of process control and scalability. Copper foils might be suitable for roll-to-roll processes, but are unlikely to be compatible with advanced microelectronic fabrication on wafers. Thus, a reliable way of growing single-crystal hBN films directly on wafers would contribute to the broad adoption of 2D layered materials in industry. Previous attempts to grow hBN monolayers on Cu (111) metals have failed to achieve mono-orientation, resulting in unwanted grain boundaries when the layers merge into films(6,7). Growing single-crystal hBN on such high-symmetry surface planes as Cu (111)(5,8) is widely believed to be impossible, even in theory. Nonetheless, here we report the successful epitaxial growth of single-crystal hBN monolayers on a Cu (111) thin film across a two-inch c-plane sapphire wafer. This surprising result is corroborated by our first-principles calculations, suggesting that the epitaxial growth is enhanced by lateral docking of hBN to Cu (111) steps, ensuring the mono-orientation of hBN monolayers. The obtained single-crystal hBN, incorporated as an interface layer between molybdenum disulfide and hafnium dioxide in a bottom-gate configuration, enhanced the electrical performance of transistors. This reliable approach to producing wafer-scale single-crystal hBN paves the way to future 2D electronics.


  
Giant thermal Hall conductivity in the pseudogap phase of cuprate superconductors 期刊论文
NATURE, 2019, 571 (7765) : 376-+
作者:  Grissonnanche, G.;  Legros, A.;  Badoux, S.;  Lefrancois, E.;  Zatko, V.;  Lizaire, M.;  Laliberte, F.;  Gourgout, A.;  Zhou, J. -S.;  Pyon, S.;  Takayama, T.;  Takagi, H.;  Ono, S.;  Doiron-Leyraud, N.;  Taillefer, L.
收藏  |  浏览/下载:8/0  |  提交时间:2019/11/27
Diode fibres for fabric-based optical communications 期刊论文
NATURE, 2018, 560 (7717) : 214-+
作者:  Rein, Michael;  Favrod, Valentine Dominique;  Hou, Chong;  Khudiyev, Tural;  Stolyarov, Alexander;  Cox, Jason;  Chung, Chia-Chun;  Chhav, Chhea;  Ellis, Marty;  Joannopoulos, John;  Fink, Yoel
收藏  |  浏览/下载:5/0  |  提交时间:2019/11/27
A low-spin Fe(III) complex with 100-ps ligand-to-metal charge transfer photoluminescence 期刊论文
NATURE, 2017, 543 (7647) : 695-+
作者:  Chabera, Pavel;  Liu, Yizhu;  Prakash, Om;  Thyrhaug, Erling;  El Nahhas, Amal;  Honarfar, Alireza;  Essen, Sofia;  Fredin, Lisa A.;  Harlang, Tobias C. B.;  Kjaer, Kasper S.;  Handrup, Karsten;  Ericson, Fredric;  Tatsuno, Hideyuki;  Morgan, Kelsey;  Schnadt, Joachim;  Haggstrom, Lennart;  Ericsson, Tore;  Sobkowiak, Adam;  Lidin, Sven;  Huang, Ping;  Styring, Stenbjorn;  Uhlig, Jens;  Bendix, Jesper;  Lomoth, Reiner;  Sundstrom, Villy;  Persson, Petter;  Warnmark, Kenneth
收藏  |  浏览/下载:6/0  |  提交时间:2019/04/09