GSTDTAP

浏览/检索结果: 共65条,第1-10条 帮助

限定条件                
已选(0)清除 条数/页:   排序方式:
Low thermal conductivity of iron-silicon alloys at Earth's core conditions with implications for the geodynamo 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Hsieh, Wen-Pin;  Goncharov, Alexander F.;  Labrosse, Stephane;  Holtgrewe, Nicholas;  Lobanov, Sergey S.;  Chuvashova, Irina;  Deschamps, Frederic;  Lin, Jung-Fu
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/06
Controls on surface water carbonate chemistry along North American ocean margins 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Cai, Wei-Jun;  Xu, Yuan-Yuan;  Feely, Richard A.;  Wanninkhof, Rik;  Jonsson, Bror;  Alin, Simone R.;  Barbero, Leticia;  Cross, Jessica N.;  Azetsu-Scott, Kumiko;  Fassbender, Andrea J.;  Carter, Brendan R.;  Jiang, Li-Qing;  Pepin, Pierre;  Chen, Baoshan;  Hussain, Najid;  Reimer, Janet J.;  Xue, Liang;  Salisbury, Joseph E.;  Martin Hernandez-Ayon, Jose;  Langdon, Chris;  Li, Qian;  Sutton, Adrienne J.;  Chen, Chen-Tung A.;  Gledhill, Dwight K.
收藏  |  浏览/下载:14/0  |  提交时间:2020/06/09
Past and future decline of tropical pelagic biodiversity 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (23) : 12891-12896
作者:  Yasuhara, Moriaki;  Wei, Chih-Lin;  Kucera, Michal;  Costello, Mark J.;  Tittensor, Derek P.;  Kiessling, Wolfgang;  Bonebrake, Timothy C.;  Tabor, Clay R.;  Feng, Ran;  Baselga, Andres;  Kretschmer, Kerstin;  Kusumoto, Buntarou;  Kubota, Yasuhiro
收藏  |  浏览/下载:15/0  |  提交时间:2020/06/01
latitudinal diversity gradients  planktonic foraminifera  temperature  Last Glacial Maximum  climate change  
Causal effects of population dynamics and environmental changes on spatial variability of marine fishes 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Wang, Jheng-Yu;  Kuo, Ting-Chun;  Hsieh, Chih-hao
收藏  |  浏览/下载:9/0  |  提交时间:2020/06/01
Impaired cell fate through gain-of-function mutations in a chromatin reader 期刊论文
NATURE, 2020, 577 (7788) : 121-+
作者:  Wan, Liling;  Chong, Shasha;  Xuan, Fan;  Liang, Angela;  Cui, Xiaodong;  Gates, Leah;  Carroll, Thomas S.;  Li, Yuanyuan;  Feng, Lijuan;  Chen, Guochao;  Wang, Shu-Ping;  Ortiz, Michael V.;  Daley, Sara K.;  Wang, Xiaolu;  Xuan, Hongwen;  Kentsis, Alex;  Muir, Tom W.;  Roeder, Robert G.;  Li, Haitao;  Li, Wei;  Tjian, Robert;  Wen, Hong;  Allis, C. David
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Modifications of histone proteins have essential roles in normal development and human disease. Recognition of modified histones by '  reader'  proteins is a key mechanism that mediates the function of histone modifications, but how the dysregulation of these readers might contribute to disease remains poorly understood. We previously identified the ENL protein as a reader of histone acetylation via its YEATS domain, linking it to the expression of cancer-driving genes in acute leukaemia1. Recurrent hotspot mutations have been found in the ENL YEATS domain in Wilms tumour2,3, the most common type of paediatric kidney cancer. Here we show, using human and mouse cells, that these mutations impair cell-fate regulation by conferring gain-of-function in chromatin recruitment and transcriptional control. ENL mutants induce gene-expression changes that favour a premalignant cell fate, and, in an assay for nephrogenesis using murine cells, result in undifferentiated structures resembling those observed in human Wilms tumour. Mechanistically, although bound to largely similar genomic loci as the wild-type protein, ENL mutants exhibit increased occupancy at a subset of targets, leading to a marked increase in the recruitment and activity of transcription elongation machinery that enforces active transcription from target loci. Furthermore, ectopically expressed ENL mutants exhibit greater self-association and form discrete and dynamic nuclear puncta that are characteristic of biomolecular hubs consisting of local high concentrations of regulatory factors. Such mutation-driven ENL self-association is functionally linked to enhanced chromatin occupancy and gene activation. Collectively, our findings show that hotspot mutations in a chromatinreader domain drive self-reinforced recruitment, derailing normal cell-fate control during development and leading to an oncogenic outcome.


  
RGF1 controls root meristem size through ROS signalling 期刊论文
NATURE, 2020, 577 (7788) : 85-+
作者:  Yamada, Masashi;  Han, Xinwei;  Benfey, Philip N.
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

The stem cell niche and the size of the root meristem in plants are maintained by intercellular interactions and signalling networks involving a peptide hormone, root meristem growth factor 1 (RGF1)(1). Understanding how RGF1 regulates the development of the root meristem is essential for understanding stem cell function. Although five receptors for RGF1 have been identified(2-4), the downstream signalling mechanism remains unknown. Here we report a series of signalling events that follow RGF1 activity. We find that the RGF1-receptor pathway controls the distribution of reactive oxygen species (ROS) along the developmental zones of the Arabidopsis root. We identify a previously uncharacterized transcription factor, RGF1-INDUCIBLE TRANSCRIPTION FACTOR 1 (RITF1), that has a central role in mediating RGF1 signalling. Manipulating RITF1 expression leads to the redistribution of ROS along the root developmental zones. Changes in ROS distribution in turn enhance the stability of the PLETHORA2 protein, a master regulator of root stem cells. Our results thus clearly depict a signalling cascade that is initiated by RGF1, linking this peptide to mechanisms that regulate ROS.


  
Accelerated discovery of CO2 electrocatalysts using active machine learning 期刊论文
NATURE, 2020, 581 (7807) : 178-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:91/0  |  提交时间:2020/07/03

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy(1,2). Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy(3-8). Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products(9-16), and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 +/- 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction(17). Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.


  
Variability in the analysis of a single neuroimaging dataset by many teams 期刊论文
NATURE, 2020
作者:  Liu, Jifeng;  Soria, Roberto;  Zheng, Zheng;  Zhang, Haotong;  Lu, Youjun;  Wang, Song;  Yuan, Hailong
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses(1). The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset(2-5). Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed.


The results obtained by seventy different teams analysing the same functional magnetic resonance imaging dataset show substantial variation, highlighting the influence of analytical choices and the importance of sharing workflows publicly and performing multiple analyses.


  
Coupling of Indo-Pacific climate variability over the last millennium 期刊论文
NATURE, 2020
作者:  Chow, Brian W.;  Nunez, Vicente;  Kaplan, Luke;  Granger, Adam J.;  Bistrong, Karina;  Zucker, Hannah L.;  Kumar, Payal;  Sabatini, Bernardo L.;  Gu, Chenghua
收藏  |  浏览/下载:34/0  |  提交时间:2020/05/13

Coral records indicate that the variability of the Indian Ocean Dipole over the last millennium is strongly coupled to variability in the El Nino/Southern Oscillation and that recent extremes are unusual but not unprecedented.


The Indian Ocean Dipole (IOD) affects climate and rainfall across the world, and most severely in nations surrounding the Indian Ocean(1-4). The frequency and intensity of positive IOD events increased during the twentieth century(5) and may continue to intensify in a warming world(6). However, confidence in predictions of future IOD change is limited by known biases in IOD models(7) and the lack of information on natural IOD variability before anthropogenic climate change. Here we use precisely dated and highly resolved coral records from the eastern equatorial Indian Ocean, where the signature of IOD variability is strong and unambiguous, to produce a semi-continuous reconstruction of IOD variability that covers five centuries of the last millennium. Our reconstruction demonstrates that extreme positive IOD events were rare before 1960. However, the most extreme event on record (1997) is not unprecedented, because at least one event that was approximately 27 to 42 per cent larger occurred naturally during the seventeenth century. We further show that a persistent, tight coupling existed between the variability of the IOD and the El Nino/Southern Oscillation during the last millennium. Indo-Pacific coupling was characterized by weak interannual variability before approximately 1590, which probably altered teleconnection patterns, and by anomalously strong variability during the seventeenth century, which was associated with societal upheaval in tropical Asia. A tendency towards clustering of positive IOD events is evident in our reconstruction, which-together with the identification of extreme IOD variability and persistent tropical Indo-Pacific climate coupling-may have implications for improving seasonal and decadal predictions and managing the climate risks of future IOD variability.


  
The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis 期刊论文
NATURE, 2020, 580 (7804) : 530-+
作者:  Erler, Janine T.;  Bennewith, Kevin L.;  Nicolau, Monica;  Dornhofer, Nadja;  Kong, Christina;  Le, Quynh-Thu;  Chi, Jen-Tsan Ashley;  Jeffrey, Stefanie S.;  Giaccia, Amato J.
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

Phosphorylation of INSIG1 and INSIG2 by PCK1 leads to a reduction in the binding of sterols, the activation of SREBP1 and SREBP2 and the downstream transcription of lipogenesis-associated genes that promote tumour growth.


Cancer cells increase lipogenesis for their proliferation and the activation of sterol regulatory element-binding proteins (SREBPs) has a central role in this process. SREBPs are inhibited by a complex composed of INSIG proteins, SREBP cleavage-activating protein (SCAP) and sterols in the endoplasmic reticulum. Regulation of the interaction between INSIG proteins and SCAP by sterol levels is critical for the dissociation of the SCAP-SREBP complex from the endoplasmic reticulum and the activation of SREBPs(1,2). However, whether this protein interaction is regulated by a mechanism other than the abundance of sterol-and in particular, whether oncogenic signalling has a role-is unclear. Here we show that activated AKT in human hepatocellular carcinoma (HCC) cells phosphorylates cytosolic phosphoenolpyruvate carboxykinase 1 (PCK1), the rate-limiting enzyme in gluconeogenesis, at Ser90. Phosphorylated PCK1 translocates to the endoplasmic reticulum, where it uses GTP as a phosphate donor to phosphorylate INSIG1 at Ser207 and INSIG2 at Ser151. This phosphorylation reduces the binding of sterols to INSIG1 and INSIG2 and disrupts the interaction between INSIG proteins and SCAP, leading to the translocation of the SCAP-SREBP complex to the Golgi apparatus, the activation of SREBP proteins (SREBP1 or SREBP2) and the transcription of downstream lipogenesis-related genes, proliferation of tumour cells, and tumorigenesis in mice. In addition, phosphorylation of PCK1 at Ser90, INSIG1 at Ser207 and INSIG2 at Ser151 is not only positively correlated with the nuclear accumulation of SREBP1 in samples from patients with HCC, but also associated with poor HCC prognosis. Our findings highlight the importance of the protein kinase activity of PCK1 in the activation of SREBPs, lipogenesis and the development of HCC.