GSTDTAP

浏览/检索结果: 共6条,第1-6条 帮助

已选(0)清除 条数/页:   排序方式:
Palaeoclimate evidence of vulnerable permafrost during times of low sea ice 期刊论文
NATURE, 2020, 577 (7789) : 221-+
作者:  Vaks, A.;  Mason, A. J.;  Breitenbach, S. F. M.;  Kononov, A. M.;  Osinzev, A. V.;  Rosensaft, M.;  Borshevsky, A.;  Gutareva, O. S.;  Henderson, G. M.
收藏  |  浏览/下载:10/0  |  提交时间:2020/05/13

Climate change in the Arctic is occurring rapidly, and projections suggest the complete loss of summer sea ice by the middle of this century(1). The sensitivity of permanently frozen ground (permafrost) in the Northern Hemisphere to warming is less clear, and its long-term trends are harder to monitor than those of sea ice. Here we use palaeoclimate data to show that Siberian permafrost is robust to warming when Arctic sea ice is present, but vulnerable when it is absent. Uranium-lead chronology of carbonate deposits (speleothems) in a Siberian cave located at the southern edge of continuous permafrost reveals periods in which the overlying ground was not permanently frozen. The speleothem record starts 1.5 million years ago (Ma), a time when greater equator-to-pole heat transport led to a warmer Northern Hemisphere(2). The growth of the speleothems indicates that permafrost at the cave site was absent at that time, becoming more frequent from about 1.35 Ma, as the Northern Hemisphere cooled, and permanent after about 0.4 Ma. This history mirrors that of year-round sea ice in the Arctic Ocean, which was largely absent before about 0.4 Ma (ref.(3)), but continuously present since that date. The robustness of permafrost when sea ice is present, as well as the increased permafrost vulnerability when sea ice is absent, can be explained by changes in both heat and moisture transport. Reduced sea ice may contribute to warming of Arctic air(4-6), which can lead to warming far inland(7). Open Arctic waters also increase the source of moisture and increase autumn snowfall over Siberia, insulating the ground from low winter temperatures(8-10). These processes explain the relationship between an ice-free Arctic and permafrost thawing before 0.4 Ma. If these processes continue during modern climate change, future loss of summer Arctic sea ice will accelerate the thawing of Siberian permafrost.


  
Mass balance of the Greenland Ice Sheet from 1992 to 2018 期刊论文
NATURE, 2020, 579 (7798) : 233-+
作者:  Scudellari, Megan
收藏  |  浏览/下载:11/0  |  提交时间:2020/04/16

The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades(1,2), and it is expected to continue to be so(3). Although increases in glacier flow(4-6) and surface melting(7-9) have been driven by oceanic(10-12) and atmospheric(13,14) warming, the magnitude and trajectory of the ice sheet'  s mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet'  s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 +/- 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 +/- 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 +/- 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 +/- 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 +/- 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 +/- 37 billion tonnes per year in the 1990s to 87 +/- 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 +/- 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions(15) and ocean temperatures fell at the terminus of Jakobshavn Isbr AE(16). Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario(17), which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate.


  
Future evolution of Marine Heatwaves in the Mediterranean Sea 期刊论文
CLIMATE DYNAMICS, 2019, 53: 1371-1392
作者:  Darmaraki, Sofia;  Somot, Samuel;  Sevault, Florence;  Nabat, Pierre;  Narvaez, William David Cabos;  Cavicchia, Leone;  Djurdjevic, Vladimir;  Li, Laurent;  Sannino, Gianmaria;  Sein, Dmitry V.
收藏  |  浏览/下载:11/0  |  提交时间:2019/11/27
Marine Heatwaves  Mediterranean Sea  Coupled regional climate models  Future scenario  Extreme ocean temperatures  Med-CORDEX  Climate change  Climate simulations  
Control of the South Atlantic Convergence Zone by extratropical thermal forcing 期刊论文
CLIMATE DYNAMICS, 2018, 50: 885-900
作者:  Talento, Stefanie;  Barreiro, Marcelo
收藏  |  浏览/下载:7/0  |  提交时间:2019/04/09
SACZ  Extratropical forcing  Tropical sea surface temperatures  Slab ocean model  
Noble gas signatures in the Island of Maui, Hawaii: Characterizing groundwater sources in fractured systems 期刊论文
WATER RESOURCES RESEARCH, 2017, 53 (5)
作者:  Niu, Yi;  Castro, M. Clara;  Hall, Chris M.;  Gingerich, Stephen B.;  Scholl, Martha A.;  Warrier, Rohit B.
收藏  |  浏览/下载:11/0  |  提交时间:2019/04/09
Maui Hawaii  noble gases  noble gas temperatures  basal aquifer  springs  mid-ocean ridge basalt  
Impact of the GeoMIP G1 sunshade geoengineering experiment on the Atlantic meridional overturning circulation 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2017, 12 (3)
作者:  Hong, Yu;  Moore, John C.;  Jevrejeva, Svetlana;  Ji, Duoying;  Phipps, Steven J.;  Lenton, Andrew;  Tilmes, Simone;  Watanabe, Shingo;  Zhao, Liyun
收藏  |  浏览/下载:5/0  |  提交时间:2019/04/09
ocean temperatures  circulation modelling  turbulent fluxes