GSTDTAP

浏览/检索结果: 共17条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
俄科学家正在研发基于地球重力场的抗干扰自主导航系统 快报文章
地球科学快报,2023年第12期
作者:  刘文浩
Microsoft Word(22Kb)  |  收藏  |  浏览/下载:532/0  |  提交时间:2023/06/25
Earth's gravitational field  Interference free autonomous navigation technology  
Insights into variation in meiosis from 31,228 human sperm genomes 期刊论文
NATURE, 2020, 583 (7815) : 259-+
作者:  Sakai, Akito;  Minami, Susumu;  Koretsune, Takashi;  Chen, Taishi;  Higo, Tomoya;  Wang, Yangming;  Nomoto, Takuya;  Hirayama, Motoaki;  Miwa, Shinji;  Nishio-Hamane, Daisuke;  Ishii, Fumiyuki;  Arita, Ryotaro;  Nakatsuji, Satoru
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03

Meiosis, although essential for reproduction, is also variable and error-prone: rates of chromosome crossover vary among gametes, between the sexes, and among humans of the same sex, and chromosome missegregation leads to abnormal chromosome numbers (aneuploidy)(1-8). To study diverse meiotic outcomes and how they covary across chromosomes, gametes and humans, we developed Sperm-seq, a way of simultaneously analysing the genomes of thousands of individual sperm. Here we analyse the genomes of 31,228 human gametes from 20 sperm donors, identifying 813,122 crossovers and 787 aneuploid chromosomes. Sperm donors had aneuploidy rates ranging from 0.01 to 0.05 aneuploidies per gamete  crossovers partially protected chromosomes from nondisjunction at the meiosis I cell division. Some chromosomes and donors underwent more-frequent nondisjunction during meiosis I, and others showed more meiosis II segregation failures. Sperm genomes also manifested manygenomic anomalies that could not be explained by simple nondisjunction. Diverse recombination phenotypes-from crossover rates to crossover location and separation, a measure of crossover interference-covaried strongly across individuals and cells. Our results can be incorporated with earlier observations into a unified model in which a core mechanism, the variable physical compaction of meiotic chromosomes, generates interindividual and cell-to-cell variation in diverse meiotic phenotypes.


  
poly(UG)-tailed RNAs in genome protection and epigenetic inheritance 期刊论文
NATURE, 2020, 582 (7811) : 283-+
作者:  Raj, Dipak K.;  Das Mohapatra, Alok;  Jnawali, Anup;  Zuromski, Jenna;  Jha, Ambrish;  Cham-Kpu, Gerald;  Sherman, Brett;  Rudlaff, Rachel M.;  Nixon, Christina E.;  Hilton, Nicholas;  Oleinikov, Andrew V.;  Chesnokov, Olga;  Merritt, Jordan;  Pond-Tor, Sunthorn
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/03

Mobile genetic elements threaten genome integrity in all organisms. RDE-3 (also known as MUT-2) is a ribonucleotidyltransferase that is required for transposon silencing and RNA interference in Caenorhabditis elegans(1-4). When tethered to RNAs in heterologous expression systems, RDE-3 can add long stretches of alternating non-templated uridine (U) and guanosine (G) ribonucleotides to the 3 '  termini of these RNAs (designated poly(UG) or pUG tails)(5). Here we show that, in its natural context in C. elegans, RDE-3 adds pUG tails to targets of RNA interference, as well as to transposon RNAs. RNA fragments attached to pUG tails with more than 16 perfectly alternating 3 '  U and G nucleotides become gene-silencing agents. pUG tails promote gene silencing by recruiting RNA-dependent RNA polymerases, which use pUG-tailed RNAs (pUG RNAs) as templates to synthesize small interfering RNAs (siRNAs). Our results show that cycles of pUG RNA-templated siRNA synthesis and siRNA-directed pUG RNA biogenesis underlie double-stranded-RNA-directed transgenerational epigenetic inheritance in the C. elegans germline. We speculate that this pUG RNA-siRNA silencing loop enables parents to inoculate progeny against the expression of unwanted or parasitic genetic elements.


In Caenorhabditis elegans, the ribonucleotidyltransferase RDE-3 adds alternating uridine and guanosine ribonucleotides to the 3 '  termini of RNAs, a key step in RNA interference and thus epigenetic inheritance in the C. elegans germline.


  
Mapping the twist-angle disorder and Landau levels in magic-angle graphene 期刊论文
NATURE, 2020, 581 (7806) : 47-+
作者:  Luck, Katja;  39;Amata, Cassandra
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

The recently discovered flat electronic bands and strongly correlated and superconducting phases in magic-angle twisted bilayer graphene (MATBG)(1,2) crucially depend on the interlayer twist angle, theta. Although control of the global theta with a precision of about 0.1 degrees has been demonstrated(1-7), little information is available on the distribution of the local twist angles. Here we use a nanoscale on-tip scanning superconducting quantum interference device (SQUID-on-tip)(8) to obtain tomographic images of the Landau levels in the quantum Hall state(9) and to map the local theta variations in hexagonal boron nitride (hBN)-encapsulated MATBG devices with relative precision better than 0.002 degrees and a spatial resolution of a few moire periods. We find a correlation between the degree of theta disorder and the quality of the MATBG transport characteristics and show that even state-of-the-art devices-which exhibit correlated states, Landau fans and superconductivity-display considerable local variation in theta of up to 0.1 degrees, exhibiting substantial gradients and networks of jumps, and may contain areas with no local MATBG behaviour. We observe that the correlated states in MATBG are particularly fragile with respect to the twist-angle disorder. We also show that the gradients of theta generate large gate-tunable in-plane electric fields, unscreened even in the metallic regions, which profoundly alter the quantum Hall state by forming edge channels in the bulk of the sample and may affect the phase diagram of the correlated and superconducting states. We thus establish the importance of theta disorder as an unconventional type of disorder enabling the use of twist-angle gradients for bandstructure engineering, for realization of correlated phenomena and for gate-tunable built-in planar electric fields for device applications.


SQUID-on-tip tomographic imaging of Landau levels in magic-angle graphene provides nanoscale maps of local twist-angle disorder and shows that its properties are fundamentally different from common types of disorder.


  
Massively parallel coherent laser ranging using a soliton microcomb 期刊论文
NATURE, 2020, 581 (7807) : 164-+
作者:  Casanova, Emmanuelle;  Knowles, Timothy D. J.;  Bayliss, Alex;  Dunne, Julie;  Baranski, Marek Z.;  Denaire, Anthony;  Lefranc, Philippe;  di Lernia, Savino;  Roffet-Salque, Melanie;  Smyth, Jessica;  Barclay, Alistair;  Gillard, Toby;  Classen, Erich;  Coles, Bryony;  Ilett, Michael;  Jeunesse, Christian;  Krueger, Marta;  Marciniak, Arkadiusz;  Minnitt, Steve;  Rotunno, Rocco;  van de Velde, Pieter;  van Wijk, Ivo;  Cotton, Jonathan;  Daykin, Andy;  Evershed, Richard P.
收藏  |  浏览/下载:44/0  |  提交时间:2020/07/03

Coherent ranging, also known as frequency-modulated continuous-wave (FMCW) laser-based light detection and ranging (lidar)(1) is used for long-range three-dimensional distance and velocimetry in autonomous driving(2,3). FMCW lidar maps distance to frequency(4,5) using frequency-chirped waveforms and simultaneously measures the Doppler shift of the reflected laser light, similar to sonar or radar(6,7) and coherent detection prevents interference from sunlight and other lidar systems. However, coherent ranging has a lower acquisition speed and requires precisely chirped(8) and highly coherent(5) laser sources, hindering widespread use of the lidar system and impeding parallelization, compared to modern time-of-flight ranging systems that use arrays of individual lasers. Here we demonstrate a massively parallel coherent lidar scheme using an ultra-low-loss photonic chip-based soliton microcomb(9). By fast chirping of the pump laser in the soliton existence range(10) of a microcomb with amplitudes of up to several gigahertz and a sweep rate of up to ten megahertz, a rapid frequency change occurs in the underlying carrier waveform of the soliton pulse stream, but the pulse-to-pulse repetition rate of the soliton pulse stream is retained. As a result, the chirp from a single narrow-linewidth pump laser is transferred to all spectral comb teeth of the soliton at once, thus enabling parallelism in the FMCW lidar. Using this approach we generate 30 distinct channels, demonstrating both parallel distance and velocity measurements at an equivalent rate of three megapixels per second, with the potential to improve sampling rates beyond 150 megapixels per second and to increase the image refresh rate of the FMCW lidar by up to two orders of magnitude without deterioration of eye safety. This approach, when combined with photonic phase arrays(11) based on nanophotonic gratings(12), provides a technological basis for compact, massively parallel and ultrahigh-frame-rate coherent lidar systems.


  
Germline Elongator mutations in Sonic Hedgehog medulloblastoma 期刊论文
NATURE, 2020, 580 (7803) : 396-+
作者:  Helmrich, S.;  Arias, A.;  Lochead, G.;  Wintermantel, T. M.;  Buchhold, M.;  Diehl, S.;  Whitlock, S.
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Cancer genomics has revealed many genes and core molecular processes that contribute to human malignancies, but the genetic and molecular bases of many rare cancers remains unclear. Genetic predisposition accounts for 5 to 10% of cancer diagnoses in children(1,2), and genetic events that cooperate with known somatic driver events are poorly understood. Pathogenic germline variants in established cancer predisposition genes have been recently identified in 5% of patients with the malignant brain tumour medulloblastoma(3). Here, by analysing all protein-coding genes, we identify and replicate rare germline loss-of-function variants across ELP1 in 14% of paediatric patients with the medulloblastoma subgroup Sonic Hedgehog (MBSHH). ELP1 was the most common medulloblastoma predisposition gene and increased the prevalence of genetic predisposition to 40% among paediatric patients with MBSHH. Parent-offspring and pedigree analyses identified two families with a history of paediatric medulloblastoma. ELP1-associated medulloblastomas were restricted to the molecular SHH alpha subtype(4) and characterized by universal biallelic inactivation of ELP1 owing to somatic loss of chromosome arm 9q. Most ELP1-associated medulloblastomas also exhibited somatic alterations in PTCH1, which suggests that germline ELP1 loss-of-function variants predispose individuals to tumour development in combination with constitutive activation of SHH signalling. ELP1 is the largest subunit of the evolutionarily conserved Elongator complex, which catalyses translational elongation through tRNA modifications at the wobble (U-34) position(5,6). Tumours from patients with ELP1-associated MBSHH were characterized by a destabilized Elongator complex, loss of Elongator-dependent tRNA modifications, codon-dependent translational reprogramming, and induction of the unfolded protein response, consistent with loss of protein homeostasis due to Elongator deficiency in model systems(7-9). Thus, genetic predisposition to proteome instability may be a determinant in the pathogenesis of paediatric brain cancers. These results support investigation of the role of protein homeostasis in other cancer types and potential for therapeutic interference.


  
Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway 期刊论文
NATURE, 2020
作者:  Moral, John Alec;  Leung, Joanne;  Rojas, Luis A.;  Ruan, Jennifer;  Zhao, Julia;  Sethna, Zachary;  Ramnarain, Anita;  Gasmi, Billel;  Gururajan, Murali;  Redmond, David;  Askan, Gokce;  Bhanot, Umesh;  Elyada, Ela;  Park, Youngkyu;  Tuveson, David A.
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

In mammalian cells, mitochondrial dysfunction triggers the integrated stress response, in which the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2 alpha) results in the induction of the transcription factor ATF4(1-3). However, how mitochondrial stress is relayed to ATF4 is unknown. Here we show that HRI is the eIF2 alpha kinase that is necessary and sufficient for this relay. In a genome-wide CRISPR interference screen, we identified factors upstream of HRI: OMA1, a mitochondrial stress-activated protease  and DELE1, a little-characterized protein that we found was associated with the inner mitochondrial membrane. Mitochondrial stress stimulates OMA1-dependent cleavage of DELE1 and leads to the accumulation of DELE1 in the cytosol, where it interacts with HRI and activates the eIF2 alpha kinase activity of HRI. In addition, DELE1 is required for ATF4 translation downstream of eIF2 alpha phosphorylation. Blockade of the OMA1-DELE1-HRI pathway triggers an alternative response in which specific molecular chaperones are induced. The OMA1-DELE1-HRI pathway therefore represents a potential therapeutic target that could enable fine-tuning of the integrated stress response for beneficial outcomes in diseases that involve mitochondrial dysfunction.


A genome-wide CRISPR interference screen shows that a signalling pathway involving OMA1, DELE1 and the eIF2 alpha kinase HRI relays mitochondrial stress to the cytosol to trigger the integrated stress response.


  
Two conserved epigenetic regulators prevent healthy ageing 期刊论文
NATURE, 2020
作者:  Yoshida, Kenichi;  Gowers, Kate H. C.;  Lee-Six, Henry;  Chandrasekharan, Deepak P.;  Coorens, Tim;  Maughan, Elizabeth F.;  Beal, Kathryn;  Menzies, Andrew;  Millar, Fraser R.;  Anderson, Elizabeth;  Clarke, Sarah E.;  Pennycuick, Adam;  Thakrar, Ricky M.;  Butler, Colin R.;  Kakiuchi, Nobuyuki;  Hirano, Tomonori;  Hynds, Robert E.;  Stratton, Michael R.;  Martincorena, Inigo;  Janes, Sam M.;  Campbell, Peter J.
收藏  |  浏览/下载:34/0  |  提交时间:2020/07/03

It has long been assumed that lifespan and healthspan correlate strongly, yet the two can be clearly dissociated(1-6). Although there has been a global increase in human life expectancy, increasing longevity is rarely accompanied by an extended healthspan(4,7). Thus, understanding the origin of healthy behaviours in old people remains an important and challenging task. Here we report a conserved epigenetic mechanism underlying healthy ageing. Through genome-wide RNA-interference-based screening of genes that regulate behavioural deterioration in ageing Caenorhabditis elegans, we identify 59 genes as potential modulators of the rate of age-related behavioural deterioration. Among these modulators, we found that a neuronal epigenetic reader, BAZ-2, and a neuronal histone 3 lysine 9 methyltransferase, SET-6, accelerate behavioural deterioration in C. elegans by reducing mitochondrial function, repressing the expression of nuclear-encoded mitochondrial proteins. This mechanism is conserved in cultured mouse neurons and human cells. Examination of human databases(8,9) shows that expression of the human orthologues of these C. elegans regulators, BAZ2B and EHMT1, in the frontal cortex increases with age and correlates positively with the progression of Alzheimer'  s disease. Furthermore, ablation of Baz2b, the mouse orthologue of BAZ-2, attenuates age-dependent body-weight gain and prevents cognitive decline in ageing mice. Thus our genome-wide RNA-interference screen in C. elegans has unravelled conserved epigenetic negative regulators of ageing, suggesting possible ways to achieve healthy ageing.


Two epigenetic regulators-identified in an RNA interference screen in Caenhorhabditis elegans, and conserved in mammals-diminish mitochondrial function and accelerate the age-related deterioration of behaviour.


  
Entanglement of two quantum memories via fibres over dozens of kilometres 期刊论文
NATURE, 2020, 578 (7794) : 240-+
作者:  Cabrita, Rita;  Lauss, Martin;  Sanna, Adriana;  Donia, Marco;  Larsen, Mathilde Skaarup;  Mitra, Shamik;  Johansson, Iva;  Phung, Bengt;  Harbst, Katja;  Vallon-Christersson, Johan;  van Schoiack, Alison;  Loevgren, Kristina;  Warren, Sarah;  Jirstroem, Karin;  Olsson, Hakan;  Pietras, Kristian;  Ingvar, Christian;  Isaksson, Karolin;  Schadendorf, Dirk;  Schmidt, Henrik;  Bastholt, Lars;  Carneiro, Ana;  Wargo, Jennifer A.;  Svane, Inge Marie;  Jonsson, Goran
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

A quantum internet that connects remote quantum processors(1,2) should enable a number of revolutionary applications such as distributed quantum computing. Its realization will rely on entanglement of remote quantum memories over long distances. Despite enormous progress(3-12), at present the maximal physical separation achieved between two nodes is 1.3 kilometres(10), and challenges for longer distances remain. Here we demonstrate entanglement of two atomic ensembles in one laboratory via photon transmission through city-scale optical fibres. The atomic ensembles function as quantum memories that store quantum states. We use cavity enhancement to efficiently create atom-photon entanglement(13-15) and we use quantum frequency conversion(16) to shift the atomic wavelength to telecommunications wavelengths. We realize entanglement over 22 kilometres of field-deployed fibres via two-photon interference(17,18) and entanglement over 50 kilometres of coiled fibres via single-photon interference(19). Our experiment could be extended to nodes physically separated by similar distances, which would thus form a functional segment of the atomic quantum network, paving the way towards establishing atomic entanglement over many nodes and over much longer distances.


  
Predicting evolutionary responses to interspecific interference in the wild 期刊论文
ECOLOGY LETTERS, 2020, 23 (2) : 221-230
作者:  Grether, Gregory F.;  Drury, Jonathan P.;  Okamoto, Kenichi W.;  McEachin, Shawn;  Anderson, Christopher N.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/02
Character displacement  competitor recognition  evolutionary simulation  individual-based model  interference competition  heterospecific aggression  interspecific aggression  reproductive interference  species recognition