GSTDTAP

浏览/检索结果: 共6条,第1-6条 帮助

已选(0)清除 条数/页:   排序方式:
Base-pair conformational switch modulates miR-34a targeting of Sirt1 mRNA 期刊论文
NATURE, 2020, 583 (7814) : 139-+
作者:  Muniz, Juan A.;  Barberena, Diego;  Lewis-Swan, Robert J.;  Young, Dylan J.;  Cline, Julia R. K.;  Rey, Ana Maria;  Thompson, James K.
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

MicroRNAs (miRNAs) regulate the levels of translation of messenger RNAs (mRNAs). At present, the major parameter that can explain the selection of the target mRNA and the efficiency of translation repression is the base pairing between the '  seed'  region of the miRNA and its counterpart mRNA(1). Here we use R-1 rho relaxation-dispersion nuclear magnetic resonance(2) and molecular simulations(3) to reveal a dynamic switch-based on the rearrangement of a single base pair in the miRNA-mRNA duplex-that elongates a weak five-base-pair seed to a complete seven-base-pair seed. This switch also causes coaxial stacking of the seed and supplementary helix fitting into human Argonaute 2 protein (Ago2), reminiscent of an active state in prokaryotic Ago(4,5). Stabilizing this transient state leads to enhanced repression of the target mRNA in cells, revealing the importance of this miRNA-mRNA structure. Our observations tie together previous findings regarding the stepwise miRNA targeting process from an initial '  screening'  state to an '  active'  state, and unveil the role of the RNA duplex beyond the seed in Ago2.


Repression of a messenger RNA by a cognate microRNA depends not only on complementary base pairing, but also on the rearrangement of a single base pair, producing a conformation that fits better within the human Ago2 protein.


  
Selective loading and processing of prespacers for precise CRISPR adaptation 期刊论文
NATURE, 2020
作者:  Liu, Guoxia;  Papa, Arianne;  Katchman, Alexander N.;  Zakharov, Sergey I.;  Roybal, Daniel;  Hennessey, Jessica A.;  Kushner, Jared;  Yang, Lin;  Chen, Bi-Xing;  Kushnir, Alexander;  Dangas, Katerina;  Gygi, Steven P.;  Pitt, Geoffrey S.;  Colecraft, Henry M.;  Ben-Johny, Manu;  Kalocsay, Marian;  Marx, Steven O.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/03

CRISPR-Cas immunity protects prokaryotes against invading genetic elements(1). It uses the highly conserved Cas1-Cas2 complex to establish inheritable memory (spacers)(2-5). How Cas1-Cas2 acquires spacers from foreign DNA fragments (prespacers) and integrates them into the CRISPR locus in the correct orientation is unclear(6,7). Here, using the high spatiotemporal resolution of single-molecule fluorescence, we show that Cas1-Cas2 selects precursors of prespacers from DNA in various forms-including single-stranded DNA and partial duplexes-in a manner that depends on both the length of the DNA strand and the presence of a protospacer adjacent motif (PAM) sequence. We also identify DnaQ exonucleases as enzymes that process the Cas1-Cas2-loaded prespacer precursors into mature prespacers of a suitable size for integration. Cas1-Cas2 protects the PAM sequence from maturation, which results in the production of asymmetrically trimmed prespacers and the subsequent integration of spacers in the correct orientation. Our results demonstrate the kinetic coordination of prespacer precursor selection and PAM trimming, providing insight into the mechanisms that underlie the integration of functional spacers in the CRISPR loci.


Cas1-Cas2 selects precursor prespacers from DNA fragments in a length- and PAM-sequence-dependent manner, and these precursors are trimmed by DnaQ exonucleases to enable integration into the CRISPR locus in the correct orientation.


  
The emergence of transcriptional identity in somatosensory neurons 期刊论文
NATURE, 2020, 577 (7790) : 392-+
作者:  Sharma, Nikhil;  Flaherty, Kali;  Lezgiyeva, Karina;  Wagner, Daniel E.;  Klein, Allon M.;  Ginty, David D.
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/03

More than twelve morphologically and physiologically distinct subtypes of primary somatosensory neuron report salient features of our internal and external environments(1-4). It is unclear how specialized gene expression programs emerge during development to endow these subtypes with their unique properties. To assess the developmental progression of transcriptional maturation of each subtype of principal somatosensory neuron, we generated a transcriptomic atlas of cells traversing the primary somatosensory neuron lineage in mice. Here we show that somatosensory neurogenesis gives rise to neurons in a transcriptionally unspecialized state, characterized by co-expression of transcription factors that become restricted to select subtypes as development proceeds. Single-cell transcriptomic analyses of sensory neurons from mutant mice lacking transcription factors suggest that these broad-to-restricted transcription factors coordinate subtype-specific gene expression programs in subtypes in which their expression is maintained. We also show that neuronal targets are involved in this process  disruption of the prototypic target-derived neurotrophic factor NGF leads to aberrant subtype-restricted patterns of transcription factor expression. Our findings support a model in which cues that emanate from intermediate and final target fields promote neuronal diversification in part by transitioning cells from a transcriptionally unspecialized state to transcriptionally distinct subtypes by modulating the selection of subtype-restricted transcription factors.


  
Patterns of somatic structural variation in human cancer genomes 期刊论文
NATURE, 2020, 578 (7793) : 112-+
作者:  Wan, Liling;  Chong, Shasha;  Xuan, Fan;  Liang, Angela;  Cui, Xiaodong;  Gates, Leah;  Carroll, Thomas S.;  Li, Yuanyuan;  Feng, Lijuan;  Chen, Guochao;  Wang, Shu-Ping;  Ortiz, Michael V.;  Daley, Sara K.;  Wang, Xiaolu;  Xuan, Hongwen;  Kentsis, Alex;  Muir, Tom W.;  Roeder, Robert G.;  Li, Haitao;  Li, Wei;  Tjian, Robert;  Wen, Hong;  Allis, C. David
收藏  |  浏览/下载:37/0  |  提交时间:2020/07/03

A key mutational process in cancer is structural variation, in which rearrangements delete, amplify or reorder genomic segments that range in size from kilobases to whole chromosomes(1-7). Here we develop methods to group, classify and describe somatic structural variants, using data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumour types(8). Sixteen signatures of structural variation emerged. Deletions have a multimodal size distribution, assort unevenly across tumour types and patients, are enriched in late-replicating regions and correlate with inversions. Tandem duplications also have a multimodal size distribution, but are enriched in early-replicating regions-as are unbalanced translocations. Replication-based mechanisms of rearrangement generate varied chromosomal structures with low-level copy-number gains and frequent inverted rearrangements. One prominent structure consists of 2-7 templates copied from distinct regions of the genome strung together within one locus. Such cycles of templated insertions correlate with tandem duplications, and-in liver cancerfrequently activate the telomerase gene TERT. A wide variety of rearrangement processes are active in cancer, which generate complex configurations of the genome upon which selection can act.


  
Exploring the links between community-based governance and sustainable energy use: Quantitative evidence from Flanders 期刊论文
ECOLOGICAL ECONOMICS, 2017, 137
作者:  Bauwens, Thomas;  Eyre, Nick
收藏  |  浏览/下载:2/0  |  提交时间:2019/04/09
Community  Renewable energy cooperative  Electricity consumption  Selection process  Flanders  
Multi-criteria selection of offshore wind farms: Case study for the Baltic States 期刊论文
ENERGY POLICY, 2017, 103
作者:  Chaouachi, Aymen;  Covrig, Catalin Felix;  Ardelean, Mircea
收藏  |  浏览/下载:5/0  |  提交时间:2019/04/09
Multi-criteria selection  Analytic hierarchy process  Wind farm  Baltic countries  Geographic information system  Power grid model