GSTDTAP

浏览/检索结果: 共96条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
研究发现PM2.5空气污染加剧全球抗生素耐药性 快报文章
资源环境快报,2023年第16期
作者:  廖 琴
Microsoft Word(40Kb)  |  收藏  |  浏览/下载:486/0  |  提交时间:2023/09/01
PM2.5  Air Pollution  Antibiotic Resistance  
UNEP发布报告应对抗生素耐药性导致的环境问题 快报文章
资源环境快报,2023年第4期
作者:  牛艺博
Microsoft Word(33Kb)  |  收藏  |  浏览/下载:614/0  |  提交时间:2023/03/02
Bracing for Superbugs  Antimicrobial resistance  Environmental  
A sensory appendage protein protects malaria vectors from pyrethroids 期刊论文
NATURE, 2020, 577 (7790) : 376-+
作者:  Coyle, Diane
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Pyrethroid-impregnated bed nets have driven considerable reductions in malaria-associated morbidity and mortality in Africa since the beginning of the century(1). The intense selection pressure exerted by bed nets has precipitated widespread and escalating resistance to pyrethroids in African Anopheles populations, threatening to reverse the gains that been made by malaria control(2). Here we show that expression of a sensory appendage protein (SAP2), which is enriched in the legs, confers pyrethroid resistance to Anopheles gambiae. Expression of SAP2 is increased in insecticide-resistant populations and is further induced after the mosquito comes into contact with pyrethroids. SAP2 silencing fully restores mortality of the mosquitoes, whereas SAP2 overexpression results in increased resistance, probably owing to high-affinity binding of SAP2 to pyrethroid insecticides. Mining of genome sequence data reveals a selective sweep near the SAP2 locus in the mosquito populations of three West African countries (Cameroon, Guinea and Burkina Faso) with the observed increase in haplotype-associated single-nucleotide polymorphisms mirroring the increasing resistance of mosquitoes to pyrethroids reported in Burkina Faso. Our study identifies a previously undescribed mechanism of insecticide resistance that is likely to be highly relevant to malaria control efforts.


  
A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1 期刊论文
NATURE, 2020, 577 (7788) : 109-+
作者:  Tao, Panfeng;  Sun, Jinqiao;  Wu, Zheming;  Wang, Shihao;  Wang, Jun;  Li, Wanjin;  Pan, Heling;  Bai, Renkui;  Zhang, Jiahui;  Wang, Ying;  Lee, Pui Y.;  Ying, Wenjing;  Zhou, Qinhua;  Hou, Jia;  Wang, Wenjie;  Sun, Bijun;  Yang, Mi;  Liu, Danru;  Fang, Ran;  Han, Huan;  Yang, Zhaohui;  Huang, Xin;  Li, Haibo;  Deuitch, Natalie;  Zhang, Yuan;  Dissanayake, Dilan;  Haude, Katrina;  McWalter, Kirsty;  Roadhouse, Chelsea;  MacKenzie, Jennifer J.;  Laxer, Ronald M.;  Aksentijevich, Ivona;  Yu, Xiaomin;  Wang, Xiaochuan;  Yuan, Junying;  Zhou, Qing
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

Activation of RIPK1 controls TNF-mediated apoptosis, necroptosis and inflammatory pathways(1). Cleavage of human and mouse RIPK1 after residues D324 and D325, respectively, by caspase-8 separates the RIPK1 kinase domain from the intermediate and death domains. The D325A mutation in mouse RIPK1 leads to embryonic lethality during mouse development(2,3). However, the functional importance of blocking caspase-8-mediated cleavage of RIPK1 on RIPK1 activation in humans is unknown. Here we identify two families with variants in RIPK1 (D324V and D324H) that lead to distinct symptoms of recurrent fevers and lymphadenopathy in an autosomaldominant manner. Impaired cleavage of RIPK1 D324 variants by caspase-8 sensitized patients'  peripheral blood mononuclear cells to RIPK1 activation, apoptosis and necroptosis induced by TNF. The patients showed strong RIPK1-dependent activation of inflammatory signalling pathways and overproduction of inflammatory cytokines and chemokines compared with unaffected controls. Furthermore, we show that expression of the RIPK1 mutants D325V or D325H in mouse embryonic fibroblasts confers not only increased sensitivity to RIPK1 activation-mediated apoptosis and necroptosis, but also induction of pro-inflammatory cytokines such as IL-6 and TNF. By contrast, patient-derived fibroblasts showed reduced expression of RIPK1 and downregulated production of reactive oxygen species, resulting in resistance to necroptosis and ferroptosis. Together, these data suggest that human non-cleavable RIPK1 variants promote activation of RIPK1, and lead to an autoinflammatory disease characterized by hypersensitivity to apoptosis and necroptosis and increased inflammatory response in peripheral blood mononuclear cells, as well as a compensatory mechanism to protect against several pro-death stimuli in fibroblasts.


  
Somatic inflammatory gene mutations in human ulcerative colitis epithelium 期刊论文
NATURE, 2020, 577 (7789) : 254-+
作者:  Nanki, Kosaku;  Fujii, Masayuki;  Shimokawa, Mariko;  Matano, Mami;  Nishikori, Shingo;  Date, Shoichi;  Takano, Ai;  Toshimitsu, Kohta;  Ohta, Yuki;  Takahashi, Sirirat;  Sugimoto, Shinya;  Ishimaru, Kazuhiro;  Kawasaki, Kenta;  Nagai, Yoko;  Ishii, Ryota;  Yoshida, Kosuke;  Sasaki, Nobuo;  Hibi, Toshifumi;  Ishihara, Soichiro;  Kanai, Takanori;  Sato, Toshiro
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

With ageing, normal human tissues experience an expansion of somatic clones that carry cancer mutations(1-7). However, whether such clonal expansion exists in the non-neoplastic intestine remains unknown. Here, using whole-exome sequencing data from 76 clonal human colon organoids, we identify a unique pattern of somatic mutagenesis in the inflamed epithelium of patients with ulcerative colitis. The affected epithelium accumulates somatic mutations in multiple genes that are related to IL-17 signalling-including NFKBIZ, ZC3H12A and PIGR, which are genes that are rarely affected in colon cancer. Targeted sequencing validates the pervasive spread of mutations that are related to IL-17 signalling. Unbiased CRISPR-based knockout screening in colon organoids reveals that the mutations confer resistance to the proapoptotic response that is induced by IL-17A. Some of these genetic mutations are known to exacerbate experimental colitis in mice(8-11), and somatic mutagenesis in human colon epithelium may be causally linked to the inflammatory process. Our findings highlight a genetic landscape that adapts to a hostile microenvironment, and demonstrate its potential contribution to the pathogenesis of ulcerative colitis.


  
Massively multiplexed nucleic acid detection with Cas13 期刊论文
NATURE, 2020, 582 (7811) : 277-+
作者:  Mahato, Biraj;  Kaya, Koray Dogan;  Fan, Yan;  Sumien, Nathalie;  Shetty, Ritu A.;  Zhang, Wei;  Davis, Delaney;  Mock, Thomas;  Batabyal, Subrata;  Ni, Aiguo;  Mohanty, Samarendra;  Han, Zongchao;  Farjo, Rafal;  Forster, Michael J.;  Swaroop, Anand;  Chavala, Sai H.
收藏  |  浏览/下载:62/0  |  提交时间:2020/07/03

CRISPR-based nucleic acid detection is used in a platform that can simultaneously detect 169 human-associated viruses in multiple samples, providing scalable, multiplexed pathogen detection aimed at routine surveillance for public health.


The great majority of globally circulating pathogens go undetected, undermining patient care and hindering outbreak preparedness and response. To enable routine surveillance and comprehensive diagnostic applications, there is a need for detection technologies that can scale to test many samples(1-3)while simultaneously testing for many pathogens(4-6). Here, we develop Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (CARMEN), a platform for scalable, multiplexed pathogen detection. In the CARMEN platform, nanolitre droplets containing CRISPR-based nucleic acid detection reagents(7)self-organize in a microwell array(8)to pair with droplets of amplified samples, testing each sample against each CRISPR RNA (crRNA) in replicate. The combination of CARMEN and Cas13 detection (CARMEN-Cas13) enables robust testing of more than 4,500 crRNA-target pairs on a single array. Using CARMEN-Cas13, we developed a multiplexed assay that simultaneously differentiates all 169 human-associated viruses with at least 10 published genome sequences and rapidly incorporated an additional crRNA to detect the causative agent of the 2020 COVID-19 pandemic. CARMEN-Cas13 further enables comprehensive subtyping of influenza A strains and multiplexed identification of dozens of HIV drug-resistance mutations. The intrinsic multiplexing and throughput capabilities of CARMEN make it practical to scale, as miniaturization decreases reagent cost per test by more than 300-fold. Scalable, highly multiplexed CRISPR-based nucleic acid detection shifts diagnostic and surveillance efforts from targeted testing of high-priority samples to comprehensive testing of large sample sets, greatly benefiting patients and public health(9-11).


  
Hepatic NADH reductive stress underlies common variation in metabolic traits 期刊论文
NATURE, 2020, 583 (7814) : 122-+
作者:  Skov, Laurits;  Coll Macia, Moises;  Sveinbjoernsson, Gardar;  Mafessoni, Fabrizio;  Lucotte, Elise A.;  Einarsdottir, Margret S.;  Jonsson, Hakon;  Halldorsson, Bjarni;  Gudbjartsson, Daniel F.;  Helgason, Agnar;  Schierup, Mikkel Heide;  Stefansson, Kari
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

The cellular NADH/NAD(+) ratio is fundamental to biochemistry, but the extent to which it reflects versus drives metabolic physiology in vivo is poorly understood. Here we report the in vivo application of Lactobacillus brevis (Lb)NOX1, a bacterial water-forming NADH oxidase, to assess the metabolic consequences of directly lowering the hepatic cytosolic NADH/NAD(+) ratio in mice. By combining this genetic tool with metabolomics, we identify circulating alpha-hydroxybutyrate levels as a robust marker of an elevated hepatic cytosolic NADH/NAD(+) ratio, also known as reductive stress. In humans, elevations in circulating alpha-hydroxybutyrate levels have previously been associated with impaired glucose tolerance(2), insulin resistance(3) and mitochondrial disease(4), and are associated with a common genetic variant in GCKR(5), which has previously been associated with many seemingly disparate metabolic traits. Using LbNOX, we demonstrate that NADH reductive stress mediates the effects of GCKR variation on many metabolic traits, including circulating triglyceride levels, glucose tolerance and FGF21 levels. Our work identifies an elevated hepatic NADH/NAD(+) ratio as a latent metabolic parameter that is shaped by human genetic variation and contributes causally to key metabolic traits and diseases. Moreover, it underscores the utility of genetic tools such as LbNOX to empower studies of '  causal metabolism'  .


The authors identify an increased hepatic NADH/NAD(+) ratio as an underlying metabolic parameter that is shaped by human genetic variation and contributes causally to key metabolic traits and diseases.


  
Resistance Formulations in Shallow Overland Flow Along a Hillslope Covered With Patchy Vegetation 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (5)
作者:  Crompton, Octavia;  Katul, Gabriel G.;  Thompson, Sally
收藏  |  浏览/下载:9/0  |  提交时间:2020/05/13
surface roughness  overland flow  hydraulic resistance  hillslope hydrology  friction coefficients  
Childhood vaccines and antibiotic use in low- and middle-income countries 期刊论文
NATURE, 2020, 581 (7806) : 94-+
作者:  Louca, Stilianos;  Pennell, Matthew W.
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

Vaccines may reduce the burden of antimicrobial resistance, in part by preventing infections for which treatment often includes the use of antibiotics(1-4). However, the effects of vaccination on antibiotic consumption remain poorly understood-especially in low- and middle-income countries (LMICs), where the burden of antimicrobial resistance is greatest(5). Here we show that vaccines that have recently been implemented in the World Health Organization'  s Expanded Programme on Immunization reduce antibiotic consumption substantially among children under five years of age in LMICs. By analysing data from large-scale studies of households, we estimate that pneumococcal conjugate vaccines and live attenuated rotavirus vaccines confer 19.7% (95% confidence interval, 3.4-43.4%) and 11.4% (4.0-18.6%) protection against antibiotic-treated episodes of acute respiratory infection and diarrhoea, respectively, in age groups that experience the greatest disease burden attributable to the vaccine-targeted pathogens(6,7). Under current coverage levels, pneumococcal and rotavirus vaccines prevent 23.8 million and 13.6 million episodes of antibiotic-treated illness, respectively, among children under five years of age in LMICs each year. Direct protection resulting from the achievement of universal coverage targets for these vaccines could prevent an additional 40.0 million episodes of antibiotic-treated illness. This evidence supports the prioritization of vaccines within the global strategy to combat antimicrobial resistance(8).


Pneumococcal and rotavirus vaccines have reduced antibiotic consumption substantially among children under five years old in low- and middle-income countries  however, this effect could be doubled if all countries were to implement vaccination programmes and meet universal vaccine coverage targets.


  
Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I 期刊论文
NATURE, 2020, 581 (7806) : 100-+
作者:  Waszak, Sebastian M.;  Robinson, Giles W.;  Gudenas, Brian L.;  Smith, Kyle S.;  Forget, Antoine;  Kojic, Marija;  Garcia-Lopez, Jesus;  Hadley, Jennifer;  Hamilton, Kayla V.;  Indersie, Emilie;  Buchhalter, Ivo;  Kerssemakers, Jules;  Jager, Natalie;  Sharma, Tanvi;  Rausch, Tobias;  Kool, Marcel;  Sturm, Dominik;  Jones, David T. W.;  Vasilyeva, Aksana;  Tatevossian, Ruth G.;  Neale, Geoffrey;  Lombard, Berangere;  Loew, Damarys;  Nakitandwe, Joy;  Rusch, Michael;  Bowers, Daniel C.;  Bendel, Anne;  Partap, Sonia;  Chintagumpala, Murali;  Crawford, John;  Gottardo, Nicholas G.;  Smith, Amy;  Dufour, Christelle;  Rutkowski, Stefan;  Eggen, Tone;  Wesenberg, Finn;  Kjaerheim, Kristina;  Feychting, Maria;  Lannering, Birgitta;  Schuz, Joachim;  Johansen, Christoffer;  Andersen, Tina V.;  Roosli, Martin;  Kuehni, Claudia E.;  Grotzer, Michael;  Remke, Marc;  Puget, Stephanie;  Pajtler, Kristian W.;  Milde, Till;  Witt, Olaf;  Ryzhova, Marina;  Korshunov, Andrey;  Orr, Brent A.;  Ellison, David W.;  Brugieres, Laurence;  Lichter, Peter;  Nichols, Kim E.;  Gajjar, Amar;  Wainwright, Brandon J.;  Ayrault, Olivier;  Korbel, Jan O.;  Northcott, Paul A.;  Pfister, Stefan M.
收藏  |  浏览/下载:38/0  |  提交时间:2020/07/03

Immune evasion is a major obstacle for cancer treatment. Common mechanisms of evasion include impaired antigen presentation caused by mutations or loss of heterozygosity of the major histocompatibility complex class I (MHC-I), which has been implicated in resistance to immune checkpoint blockade (ICB) therapy(1-3). However, in pancreatic ductal adenocarcinoma (PDAC), which is resistant to most therapies including ICB4, mutations that cause loss of MHC-I are rarely found(5) despite the frequent downregulation of MHC-I expression(6-8). Here we show that, in PDAC, MHC-I molecules are selectively targeted for lysosomal degradation by an autophagy-dependent mechanism that involves the autophagy cargo receptor NBR1. PDAC cells display reduced expression of MHC-I at the cell surface and instead demonstrate predominant localization within autophagosomes and lysosomes. Notably, inhibition of autophagy restores surface levels of MHC-I and leads to improved antigen presentation, enhanced anti-tumour T cell responses and reduced tumour growth in syngeneic host mice. Accordingly, the anti-tumour effects of autophagy inhibition are reversed by depleting CD8(+) T cells or reducing surface expression of MHC-I. Inhibition of autophagy, either genetically or pharmacologically with chloroquine, synergizes with dual ICB therapy (anti-PD1 and anti-CTLA4 antibodies), and leads to an enhanced anti-tumour immune response. Our findings demonstrate a role for enhanced autophagy or lysosome function in immune evasion by selective targeting of MHC-I molecules for degradation, and provide a rationale for the combination of autophagy inhibition and dual ICB therapy as a therapeutic strategy against PDAC.


Inhibition of the autophagy-lysosome system upregulates surface expression of MHC class I proteins and enhances antigen presentation, and evokes a potent anti-tumour immune response that is mediated by CD8(+) T cells.