GSTDTAP

浏览/检索结果: 共70条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
世界银行指出南亚需要采取紧急行动遏制空气污染 快报文章
资源环境快报,2022年第24期
作者:  廖 琴
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:405/0  |  提交时间:2023/01/01
South Asia  Clean Air  Air Pollution  Public Health  
UKRI将新建数据中心应对气候和环境问题 快报文章
资源环境快报,2021年第23期
作者:  牛艺博
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:713/0  |  提交时间:2021/12/16
NERC  data hub  environment data  climate change  public health  
变化世界中的水、粮食和公共卫生 快报文章
资源环境快报,2021年第7期
作者:  吴秀平
Microsoft Word(18Kb)  |  收藏  |  浏览/下载:257/0  |  提交时间:2021/04/20
Water, Food  Public Health  
将健康列为优先事项的气候政策可拯救更多生命 快报文章
气候变化快报,2021年第5期
作者:  刘燕飞
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:469/0  |  提交时间:2021/03/05
public health  Paris Agreement  nationally determined contributions (NDCs)  
Identifying airborne transmission as the dominant route for the spread of COVID-19 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (26) : 14857-14863
作者:  Zhang, Renyi;  Li, Yixin;  Zhang, Annie L.;  Wang, Yuan;  Molina, Mario J.
收藏  |  浏览/下载:12/0  |  提交时间:2020/06/16
COVID-19  virus  aerosol  public health  pandemic  
Massively multiplexed nucleic acid detection with Cas13 期刊论文
NATURE, 2020, 582 (7811) : 277-+
作者:  Mahato, Biraj;  Kaya, Koray Dogan;  Fan, Yan;  Sumien, Nathalie;  Shetty, Ritu A.;  Zhang, Wei;  Davis, Delaney;  Mock, Thomas;  Batabyal, Subrata;  Ni, Aiguo;  Mohanty, Samarendra;  Han, Zongchao;  Farjo, Rafal;  Forster, Michael J.;  Swaroop, Anand;  Chavala, Sai H.
收藏  |  浏览/下载:62/0  |  提交时间:2020/07/03

CRISPR-based nucleic acid detection is used in a platform that can simultaneously detect 169 human-associated viruses in multiple samples, providing scalable, multiplexed pathogen detection aimed at routine surveillance for public health.


The great majority of globally circulating pathogens go undetected, undermining patient care and hindering outbreak preparedness and response. To enable routine surveillance and comprehensive diagnostic applications, there is a need for detection technologies that can scale to test many samples(1-3)while simultaneously testing for many pathogens(4-6). Here, we develop Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (CARMEN), a platform for scalable, multiplexed pathogen detection. In the CARMEN platform, nanolitre droplets containing CRISPR-based nucleic acid detection reagents(7)self-organize in a microwell array(8)to pair with droplets of amplified samples, testing each sample against each CRISPR RNA (crRNA) in replicate. The combination of CARMEN and Cas13 detection (CARMEN-Cas13) enables robust testing of more than 4,500 crRNA-target pairs on a single array. Using CARMEN-Cas13, we developed a multiplexed assay that simultaneously differentiates all 169 human-associated viruses with at least 10 published genome sequences and rapidly incorporated an additional crRNA to detect the causative agent of the 2020 COVID-19 pandemic. CARMEN-Cas13 further enables comprehensive subtyping of influenza A strains and multiplexed identification of dozens of HIV drug-resistance mutations. The intrinsic multiplexing and throughput capabilities of CARMEN make it practical to scale, as miniaturization decreases reagent cost per test by more than 300-fold. Scalable, highly multiplexed CRISPR-based nucleic acid detection shifts diagnostic and surveillance efforts from targeted testing of high-priority samples to comprehensive testing of large sample sets, greatly benefiting patients and public health(9-11).


  
Ten reasons why immunity passports are a bad idea 期刊论文
NATURE, 2020, 581 (7809) : 379-381
作者:  Baker, Noah;  Swanton, Charlie
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Restricting movement on the basis of biology threatens freedom, fairness and public health.


Restricting movement on the basis of biology threatens freedom, fairness and public health.


  
Structural insight into arenavirus replication machinery 期刊论文
NATURE, 2020, 579 (7800) : 615-+
作者:  Zhang, Xiaheng;  Smith, Russell T.;  Le, Chip;  McCarver, Stefan J.;  Shireman, Brock T.;  Carruthers, Nicholas I.;  MacMillan, David W. C.
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/03

The authors provide high-resolution structures of two arenavirus polymerases, revealing that the active site of arenavirus polymerase is inherently switched on, without the requirement for allosteric activation by 5 '  -viral RNA, and that dimerization facilitates polymerase activity.


Arenaviruses can cause severe haemorrhagic fever and neurological diseases in humans and other animals, exemplified by Lassa mammarenavirus, Machupo mammarenavirus and lymphocytic choriomeningitis virus, posing great threats to public health(1-4). These viruses encode a large multi-domain RNA-dependent RNA polymerase for transcription and replication of the viral genome(5). Viral polymerases are one of the leading antiviral therapeutic targets. However, the structure of arenavirus polymerase is not yet known. Here we report the near-atomic resolution structures of Lassa and Machupo virus polymerases in both apo and promoter-bound forms. These structures display a similar overall architecture to influenza virus and bunyavirus polymerases but possess unique local features, including an arenavirus-specific insertion domain that regulates the polymerase activity. Notably, the ordered active site of arenavirus polymerase is inherently switched on, without the requirement for allosteric activation by 5 '  -viral RNA, which is a necessity for both influenza virus and bunyavirus polymerases(6,7). Moreover, dimerization could facilitate the polymerase activity. These findings advance our understanding of the mechanism of arenavirus replication and provide an important basis for developing antiviral therapeutics.


  
A new coronavirus associated with human respiratory disease in China 期刊论文
NATURE, 2020, 579 (7798) : 265-+
作者:  Rollie, Clare;  Chevallereau, Anne;  Watson, Bridget N. J.;  Chyou, Te-yuan;  Fradet, Olivier;  McLeod, Isobel;  Fineran, Peter C.;  Brown, Chris M.;  Gandon, Sylvain;  Westra, Edze R.
收藏  |  浏览/下载:56/0  |  提交时间:2020/07/03

Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health(1-3). Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing(4) of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here '  WH-Human 1'  coronavirus (and has also been referred to as '  2019-nCoV'  ). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China(5). This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.


  
On-device lead sequestration for perovskite solar cells 期刊论文
NATURE, 2020, 578 (7796) : 555-+
作者:  Fruchart, Michel;  Zhou, Yujie;  Vitelli, Vincenzo
收藏  |  浏览/下载:30/0  |  提交时间:2020/07/03

Perovskite solar cells, as an emerging high-efficiency and low-cost photovoltaic technology(1-6), face obstacles on their way towards commercialization. Substantial improvements have been made to device stability(7-10), but potential issues with lead toxicity and leaching from devices remain relatively unexplored(11-16). The potential for lead leakage could be perceived as an environmental and public health risk when using perovskite solar cells in building-integrated photovoltaics(17-23). Here we present a chemical approach for on-device sequestration of more than 96 per cent of lead leakage caused by severe device damage. A coating of lead-absorbing material is applied to the front and back sides of the device stack. On the glass side of the front transparent conducting electrode, we use a transparent lead-absorbing molecular film containing phosphonic acid groups that bind strongly to lead. On the back (metal) electrode side, we place a polymer film blended with lead-chelating agents between the metal electrode and a standard photovoltaic packing film. The lead-absorbing films on both sides swell to absorb the lead, rather than dissolve, when subjected to water soaking, thus retaining structural integrity for easy collection of lead after damage.


Using lead-absorbing materials to coat the front and back of perovskite solar cells can prevent lead leaching from damaged devices, without affecting the device performance or long-term operation stability.