GSTDTAP

浏览/检索结果: 共19条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Potential circadian effects on translational failure for neuroprotection 期刊论文
NATURE, 2020
作者:  Sakai, Akito;  Minami, Susumu;  Koretsune, Takashi;  Chen, Taishi;  Higo, Tomoya;  Wang, Yangming;  Nomoto, Takuya;  Hirayama, Motoaki;  Miwa, Shinji;  Nishio-Hamane, Daisuke;  Ishii, Fumiyuki;  Arita, Ryotaro;  Nakatsuji, Satoru
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Neuroprotectant strategies that have worked in rodent models of stroke have failed to provide protection in clinical trials. Here we show that the opposite circadian cycles in nocturnal rodents versus diurnal humans(1,2) may contribute to this failure in translation. We tested three independent neuroprotective approaches-normobaric hyperoxia, the free radical scavenger alpha-phenyl-butyl-tert-nitrone (alpha PBN), and the N-methyl-d-aspartic acid (NMDA) antagonist MK801-in mouse and rat models of focal cerebral ischaemia. All three treatments reduced infarction in day-time (inactive phase) rodent models of stroke, but not in night-time (active phase) rodent models of stroke, which match the phase (active, day-time) during which most strokes occur in clinical trials. Laser-speckle imaging showed that the penumbra of cerebral ischaemia was narrower in the active-phase mouse model than in the inactive-phase model. The smaller penumbra was associated with a lower density of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)-positive dying cells and reduced infarct growth from 12 to 72 h. When we induced circadian-like cycles in primary mouse neurons, deprivation of oxygen and glucose triggered a smaller release of glutamate and reactive oxygen species, as well as lower activation of apoptotic and necroptotic mediators, in '  active-phase'  than in '  inactive-phase'  rodent neurons. alpha PBN and MK801 reduced neuronal death only in '  inactive-phase'  neurons. These findings suggest that the influence of circadian rhythm on neuroprotection must be considered for translational studies in stroke and central nervous system diseases.


Studies in rats and mice at different times of day suggest that the failure of neuroprotective strategies for stroke in translational studies might be related to the difference in circadian cycles between humans and rodents.


  
CRISPR screen in regulatory T cells reveals modulators of Foxp3 期刊论文
NATURE, 2020
作者:  Xu, Daqian;  Wang, Zheng;  Xia, Yan;  Shao, Fei;  Xia, Weiya;  Wei, Yongkun;  Li, Xinjian;  Qian, Xu;  Lee, Jong-Ho;  Du, Linyong;  Zheng, Yanhua;  Lv, Guishuai;  Leu, Jia-shiun;  Wang, Hongyang;  Xing, Dongming;  Liang, Tingbo;  Hung, Mien-Chie;  Lu, Zhimin
收藏  |  浏览/下载:34/0  |  提交时间:2020/07/03

Regulatory T (T-reg) cells are required to control immune responses and maintain homeostasis, but are a significant barrier to antitumour immunity(1). Conversely, T-reg instability, characterized by loss of the master transcription factor Foxp3 and acquisition of proinflammatory properties(2), can promote autoimmunity and/or facilitate more effective tumour immunity(3,4). A comprehensive understanding of the pathways that regulate Foxp3 could lead to more effective T-reg therapies for autoimmune disease and cancer. The availability of new functional genetic tools has enabled the possibility of systematic dissection of the gene regulatory programs that modulate Foxp3 expression. Here we developed a CRISPR-based pooled screening platform for phenotypes in primary mouse T-reg cells and applied this technology to perform a targeted loss-of-function screen of around 500 nuclear factors to identify gene regulatory programs that promote or disrupt Foxp3 expression. We identified several modulators of Foxp3 expression, including ubiquitin-specific peptidase 22 (Usp22) and ring finger protein 20 (Rnf20). Usp22, a member of the deubiquitination module of the SAGA chromatin-modifying complex, was revealed to be a positive regulator that stabilized Foxp3 expression  whereas the screen suggested that Rnf20, an E3 ubiquitin ligase, can serve as a negative regulator of Foxp3. T-reg-specific ablation of Usp22 in mice reduced Foxp3 protein levels and caused defects in their suppressive function that led to spontaneous autoimmunity but protected against tumour growth in multiple cancer models. Foxp3 destabilization in Usp22-deficient T-reg cells could be rescued by ablation of Rnf20, revealing a reciprocal ubiquitin switch in T-reg cells. These results reveal previously unknown modulators of Foxp3 and demonstrate a screening method that can be broadly applied to discover new targets for T-reg immunotherapies for cancer and autoimmune disease.


A CRISPR-based screening platform was used to identify previously uncharacterized genes that regulate the regulatory T cell-specific master transcription factor Foxp3, indicating that this screening method may be broadly applicable for the discovery of other genes involved in autoimmunity and immune responses to cancer.


  
Asynchronous carbon sink saturation in African and Amazonian tropical forests 期刊论文
NATURE, 2020, 579 (7797) : 80-+
作者:  Wannes Hubau;  Simon L. Lewis;  Oliver L. Phillips;  Kofi Affum-Baffoe;  Hans Beeckman;  Aida Cuní;  -Sanchez;  Armandu K. Daniels;  Corneille E. N. Ewango;  Sophie Fauset;  Jacques M. Mukinzi;  Douglas Sheil;  Bonaventure Sonké;  Martin J. P. Sullivan;  Terry C. H. Sunderland;  Hermann Taedoumg;  Sean C. Thomas;  Lee J. T. White;  Katharine A. Abernethy;  Stephen Adu-Bredu;  Christian A. Amani;  Timothy R. Baker;  Lindsay F. Banin;  Fidè;  le Baya;  Serge K. Begne;  Amy C. Bennett;  Fabrice Benedet;  Robert Bitariho;  Yannick E. Bocko;  Pascal Boeckx;  Patrick Boundja;  Roel J. W. Brienen;  Terry Brncic;  Eric Chezeaux;  George B. Chuyong;  Connie J. Clark;  Murray Collins;  James A. Comiskey;  David A. Coomes;  Greta C. Dargie;  Thales de Haulleville;  Marie Noel Djuikouo Kamdem;  Jean-Louis Doucet;  Adriane Esquivel-Muelbert;  Ted R. Feldpausch;  Alusine Fofanah;  Ernest G. Foli;  Martin Gilpin;  Emanuel Gloor;  Christelle Gonmadje;  Sylvie Gourlet-Fleury;  Jefferson S. Hall;  Alan C. Hamilton;  David J. Harris;  Terese B. Hart;  Mireille B. N. Hockemba;  Annette Hladik;  Suspense A. Ifo;  Kathryn J. Jeffery;  Tommaso Jucker;  Emmanuel Kasongo Yakusu;  Elizabeth Kearsley;  David Kenfack;  Alexander Koch;  Miguel E. Leal;  Aurora Levesley;  Jeremy A. Lindsell;  Janvier Lisingo;  Gabriela Lopez-Gonzalez;  Jon C. Lovett;  Jean-Remy Makana;  Yadvinder Malhi;  Andrew R. Marshall;  Jim Martin;  Emanuel H. Martin;  Faustin M. Mbayu;  Vincent P. Medjibe;  Vianet Mihindou;  Edward T. A. Mitchard;  Sam Moore;  Pantaleo K. T. Munishi;  Natacha Nssi Bengone;  Lucas Ojo;  Fidè;  le Evouna Ondo;  Kelvin S.-H. Peh;  Georgia C. Pickavance;  Axel Dalberg Poulsen;  John R. Poulsen;  Lan Qie;  Jan Reitsma;  Francesco Rovero;  Michael D. Swaine;  Joey Talbot;  James Taplin;  David M. Taylor;  Duncan W. Thomas;  Benjamin Toirambe;  John Tshibamba Mukendi;  Darlington Tuagben;  Peter M. Umunay;  Geertje M. F. van der Heijden;  Hans Verbeeck;  Jason Vleminckx;  Simon Willcock;  Hannsjö;  rg Wö;  ll;  John T. Woods;  Lise Zemagho
收藏  |  浏览/下载:26/0  |  提交时间:2020/05/13

Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions(1-3). Climate-driven vegetation models typically predict that this tropical forest '  carbon sink'  will continue for decades(4,5). Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53-0.79), in contrast to the long-term decline in Amazonian forests(6). Therefore the carbon sink responses of Earth'  s two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature(7-9). Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth'  s intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass(10) reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth'  s climate.


  
The need for ecological ethics in a new ecological economics 期刊论文
ECOLOGICAL ECONOMICS, 2020, 169
作者:  Washington, Haydn;  Maloney, Michelle
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
Ecological economic models  Ecological ethics  Commodification of nature  Steady state economy  Ecocentrism  Neoliberalism  Endless growth  Ecojustice  Rights of nature  
CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities 期刊论文
NATURE, 2020
作者:  Yang, Jianfeng;  Faccenda, Manuele
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Cancer genomics studies have identified thousands of putative cancer driver genes(1). Development of high-throughput and accurate models to define the functions of these genes is a major challenge. Here we devised a scalable cancer-spheroid model and performed genome-wide CRISPR screens in 2D monolayers and 3D lung-cancer spheroids. CRISPR phenotypes in 3D more accurately recapitulated those of in vivo tumours, and genes with differential sensitivities between 2D and 3D conditions were highly enriched for genes that are mutated in lung cancers. These analyses also revealed drivers that are essential for cancer growth in 3D and in vivo, but not in 2D. Notably, we found that carboxypeptidase D is responsible for removal of a C-terminal RKRR motif(2) from the alpha-chain of the insulin-like growth factor 1 receptor that is critical for receptor activity. Carboxypeptidase D expression correlates with patient outcomes in patients with lung cancer, and loss of carboxypeptidase D reduced tumour growth. Our results reveal key differences between 2D and 3D cancer models, and establish a generalizable strategy for performing CRISPR screens in spheroids to reveal cancer vulnerabilities.


CRISPR screens in a 3D spheroid cancer model system more accurately recapitulate cancer phenotypes than existing 2D models and were used to identify carboxypeptidase D, acting via the IGF1R, as a 3D-specific driver of cancer growth.


  
Epigenetic therapy inhibits metastases by disrupting premetastatic niches 期刊论文
NATURE, 2020, 579 (7798) : 284-+
作者:  Mehta, Vedanta;  Pang, Kar-Lai;  Rozbesky, Daniel;  Nather, Katrin;  Keen, Adam;  Lachowski, Dariusz;  Kong, Youxin;  Karia, Dimple;  Ameismeier, Michael;  Huang, Jianhua;  Fang, Yun;  del Rio Hernandez, Armando;  Reader, John S.;  Jones, E. Yvonne;  Tzima, Ellie
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/03

Cancer recurrence after surgery remains an unresolved clinical problem(1-3). Myeloid cells derived from bone marrow contribute to the formation of the premetastatic microenvironment, which is required for disseminating tumour cells to engraft distant sites(4-6). There are currently no effective interventions that prevent the formation of the premetastatic microenvironment(6,7). Here we show that, after surgical removal of primary lung, breast and oesophageal cancers, low-dose adjuvant epigenetic therapy disrupts the premetastatic microenvironment and inhibits both the formation and growth of lung metastases through its selective effect on myeloid-derived suppressor cells (MDSCs). In mouse models of pulmonary metastases, MDSCs are key factors in the formation of the premetastatic microenvironment after resection of primary tumours. Adjuvant epigenetic therapy that uses low-dose DNA methyltransferase and histone deacetylase inhibitors, 5-azacytidine and entinostat, disrupts the premetastatic niche by inhibiting the trafficking of MDSCs through the downregulation of CCR2 and CXCR2, and by promoting MDSC differentiation into a more-interstitial macrophage-like phenotype. A decreased accumulation of MDSCs in the premetastatic lung produces longer periods of disease-free survival and increased overall survival, compared with chemotherapy. Our data demonstrate that, even after removal of the primary tumour, MDSCs contribute to the development of premetastatic niches and settlement of residual tumour cells. A combination of low-dose adjuvant epigenetic modifiers that disrupts this premetastatic microenvironment and inhibits metastases may permit an adjuvant approach to cancer therapy.


  
Loss of p53 drives neuron reprogramming in head and neck cancer 期刊论文
NATURE, 2020, 578 (7795) : 449-+
作者:  Lipson, Mark;  39;ane
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

MicroRNAs from head and neck cancer cells, shuttled to sensory neurons by extracellular vesicles, cause a shift to an adrenergic neuronal phenotype that promotes tumour progression.


The solid tumour microenvironment includes nerve fibres that arise from the peripheral nervous system(1,2). Recent work indicates that newly formed adrenergic nerve fibres promote tumour growth, but the origin of these nerves and the mechanism of their inception are unknown(1,3). Here, by comparing the transcriptomes of cancer-associated trigeminal sensory neurons with those of endogenous neurons in mouse models of oral cancer, we identified an adrenergic differentiation signature. We show that loss of TP53 leads to adrenergic transdifferentiation of tumour-associated sensory nerves through loss of the microRNA miR-34a. Tumour growth was inhibited by sensory denervation or pharmacological blockade of adrenergic receptors, but not by chemical sympathectomy of pre-existing adrenergic nerves. A retrospective analysis of samples from oral cancer revealed that p53 status was associated with nerve density, which was in turn associated with poor clinical outcomes. This crosstalk between cancer cells and neurons represents mechanism by which tumour-associated neurons are reprogrammed towards an adrenergic phenotype that can stimulate tumour progression, and is a potential target for anticancer therapy.


  
Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer 期刊论文
NATURE, 2020, 578 (7794) : 306-+
作者:  Harper, Gavin;  Sommerville, Roberto;  Kendrick, Emma;  Driscoll, Laura;  Slater, Peter;  Stolkin, Rustam;  Walton, Allan;  Christensen, Paul;  Heidrich, Oliver;  Lambert, Simon;  Abbott, Andrew;  Ryder, Karl;  Gaines, Linda;  Anderson, Paul
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

ABBV-744, a selective inhibitor of the BD2 domains of BET family proteins, is effective against prostate cancer in mouse xenograft models, with lower toxicities than the dual-bromodomain BET inhibitor ABBV-075.


Proteins of the bromodomain and extra-terminal (BET) domain family are epigenetic readers that bind acetylated histones through their bromodomains to regulate gene transcription. Dual-bromodomain BET inhibitors (DbBi) that bind with similar affinities to the first (BD1) and second (BD2) bromodomains of BRD2, BRD3, BRD4 and BRDt have displayed modest clinical activity in monotherapy cancer trials. A reduced number of thrombocytes in the blood (thrombocytopenia) as well as symptoms of gastrointestinal toxicity are dose-limiting adverse events for some types of DbBi(1-5). Given that similar haematological and gastrointestinal defects were observed after genetic silencing of Brd4 in mice(6), the platelet and gastrointestinal toxicities may represent on-target activities associated with BET inhibition. The two individual bromodomains in BET family proteins may have distinct functions(7-9) and different cellular phenotypes after pharmacological inhibition of one or both bromodomains have been reported(10,11), suggesting that selectively targeting one of the bromodomains may result in a different efficacy and tolerability profile compared with DbBi. Available compounds that are selective to individual domains lack sufficient potency and the pharmacokinetics properties that are required for in vivo efficacy and tolerability assessment(10-13). Here we carried out a medicinal chemistry campaign that led to the discovery of ABBV-744, a highly potent and selective inhibitor of the BD2 domain of BET family proteins with drug-like properties. In contrast to the broad range of cell growth inhibition induced by DbBi, the antiproliferative activity of ABBV-744 was largely, but not exclusively, restricted to cell lines of acute myeloid leukaemia and prostate cancer that expressed the full-length androgen receptor (AR). ABBV-744 retained robust activity in prostate cancer xenografts, and showed fewer platelet and gastrointestinal toxicities than the DbBi ABBV-075(14). Analyses of RNA expression and chromatin immunoprecipitation followed by sequencing revealed that ABBV-744 displaced BRD4 from AR-containing super-enhancers and inhibited AR-dependent transcription, with less impact on global transcription compared with ABBV-075. These results underscore the potential value of selectively targeting the BD2 domain of BET family proteins for cancer therapy.


  
Antagonistic cooperativity between crystal growth modifiers 期刊论文
NATURE, 2020, 577 (7791) : 497-+
作者:  Ma, Wenchuan;  Lutsko, James F.;  Rimer, Jeffrey D.;  Vekilov, Peter G.
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

Inhibitor pairs that suppress the crystallization of haematin, which is a part of malaria parasites'  physiology, show unexpected antagonism due to attenuation of step pinning by kink blockers.


Ubiquitous processes in nature and the industry exploit crystallization from multicomponent environments(1-5)  however, laboratory efforts have focused on the crystallization of pure solutes(6,7) and the effects of single growth modifiers(8,9). Here we examine the molecular mechanisms employed by pairs of inhibitors in blocking the crystallization of haematin, which is a model organic compound with relevance to the physiology of malaria parasites(10,11). We use a combination of scanning probe microscopy and molecular modelling to demonstrate that inhibitor pairs, whose constituents adopt distinct mechanisms of haematin growth inhibition, kink blocking and step pinning(12,13), exhibit both synergistic and antagonistic cooperativity depending on the inhibitor combination and applied concentrations. Synergism between two crystal growth modifiers is expected, but the antagonistic cooperativity of haematin inhibitors is not reflected in current crystal growth models. We demonstrate that kink blockers reduce the line tension of step edges, which facilitates both the nucleation of crystal layers and step propagation through the gates created by step pinners. The molecular viewpoint on cooperativity between crystallization modifiers provides guidance on the pairing of modifiers in the synthesis of crystalline materials. The proposed mechanisms indicate strategies to understand and control crystallization in both natural and engineered systems, which occurs in complex multicomponent media(1-3,8,9). In a broader context, our results highlight the complexity of crystal-modifier interactions mediated by the structure and dynamics of the crystal interface.


  
AQP5 enriches for stem cells and cancer origins in the distal stomach 期刊论文
NATURE, 2020, 578 (7795) : 437-+
作者:  Athukoralage, Januka S.;  McMahon, Stephen A.;  Zhang, Changyi;  Grueschow, Sabine;  Graham, Shirley;  Krupovic, Mart;  Whitaker, Rachel J.;  Gloster, Tracey M.;  White, Malcolm F.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

LGR5 marks resident adult epithelial stem cells at the gland base in the mouse pyloric stomach(1), but the identity of the equivalent human stem cell population remains unknown owing to a lack of surface markers that facilitate its prospective isolation and validation. In mouse models of intestinal cancer, LGR5(+) intestinal stem cells are major sources of cancer following hyperactivation of the WNT pathway(2). However, the contribution of pyloric LGR5(+) stem cells to gastric cancer following dysregulation of the WNT pathway-a frequent event in gastric cancer in humans(3)-is unknown. Here we use comparative profiling of LGR5(+) stem cell populations along the mouse gastrointestinal tract to identify, and then functionally validate, the membrane protein AQP5 as a marker that enriches for mouse and human adult pyloric stem cells. We show that stem cells within the AQP5(+) compartment are a source of WNT-driven, invasive gastric cancer in vivo, using newly generated Aqp5-creERT2 mouse models. Additionally, tumour-resident AQP5(+) cells can selectively initiate organoid growth in vitro, which indicates that this population contains potential cancer stem cells. In humans, AQP5 is frequently expressed in primary intestinal and diffuse subtypes of gastric cancer (and in metastases of these subtypes), and often displays altered cellular localization compared with healthy tissue. These newly identified markers and mouse models will be an invaluable resource for deciphering the early formation of gastric cancer, and for isolating and characterizing human-stomach stem cells as a prerequisite for harnessing the regenerative-medicine potential of these cells in the clinic.


AQP5 is identified as a marker for pyloric stem cells in humans and mice, and stem cells in the AQP5(+) compartment are shown to be a source of invasive gastric cancer in mouse models.