GSTDTAP

浏览/检索结果: 共12条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Accelerated discovery of CO2 electrocatalysts using active machine learning 期刊论文
NATURE, 2020, 581 (7807) : 178-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:89/0  |  提交时间:2020/07/03

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy(1,2). Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy(3-8). Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products(9-16), and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 +/- 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction(17). Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.


  
An intestinal zinc sensor regulates food intake and developmental growth 期刊论文
NATURE, 2020, 580 (7802) : 263-+
作者:  Wu, Thomas D.;  39;Gorman, William E.
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Hodor, an intestinal zinc-gated chloride channel, controls systemic growth in Drosophila by promoting food intake and by modulating Tor signalling and lysosomal homeostasis within enterocytes.


In cells, organs and whole organisms, nutrient sensing is key to maintaining homeostasis and adapting to a fluctuating environment(1). In many animals, nutrient sensors are found within the enteroendocrine cells of the digestive system  however, less is known about nutrient sensing in their cellular siblings, the absorptive enterocytes(1). Here we use a genetic screen in Drosophila melanogaster to identify Hodor, an ionotropic receptor in enterocytes that sustains larval development, particularly in nutrient-scarce conditions. Experiments in Xenopus oocytes and flies indicate that Hodor is a pH-sensitive, zinc-gated chloride channel that mediates a previously unrecognized dietary preference for zinc. Hodor controls systemic growth from a subset of enterocytes-interstitial cells-by promoting food intake and insulin/IGF signalling. Although Hodor sustains gut luminal acidity and restrains microbial loads, its effect on systemic growth results from the modulation of Tor signalling and lysosomal homeostasis within interstitial cells. Hodor-like genes are insect-specific, and may represent targets for the control of disease vectors. Indeed, CRISPR-Cas9 genome editing revealed that the single hodor orthologue in Anopheles gambiae is an essential gene. Our findings highlight the need to consider the instructive contributions of metals-and, more generally, micronutrients-to energy homeostasis.


  
Ball-and-chain inactivation in a calcium-gated potassium channel 期刊论文
NATURE, 2020, 580 (7802) : 288-+
作者:  Peron, Simon;  Pancholi, Ravi;  Voelcker, Bettina;  Wittenbach, Jason D.;  olafsdottir, H. Freyja;  Freeman, Jeremy;  Svoboda, Karel
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

Cryo-electron microscopy structures and molecular dynamics simulations of the calcium-activated potassium channel MthK from Methanobacterium thermoautotrophicum are used to show that gating of this channel involves a ball-and-chain inactivation mechanism mediated by a previously unresolved N-terminal peptide.


Inactivation is the process by which ion channels terminate ion flux through their pores while the opening stimulus is still present(1). In neurons, inactivation of both sodium and potassium channels is crucial for the generation of action potentials and regulation of firing frequency(1,2). A cytoplasmic domain of either the channel or an accessory subunit is thought to plug the open pore to inactivate the channel via a '  ball-and-chain'  mechanism(3-7). Here we use cryo-electron microscopy to identify the molecular gating mechanism in calcium-activated potassium channels by obtaining structures of the MthK channel from Methanobacterium thermoautotrophicum-a purely calcium-gated and inactivating channel-in a lipid environment. In the absence of Ca2+, we obtained a single structure in a closed state, which was shown by atomistic simulations to be highly flexible in lipid bilayers at ambient temperature, with large rocking motions of the gating ring and bending of pore-lining helices. In Ca2+-bound conditions, we obtained several structures, including multiple open-inactivated conformations, further indication of a highly dynamic protein. These different channel conformations are distinguished by rocking of the gating rings with respect to the transmembrane region, indicating symmetry breakage across the channel. Furthermore, in all conformations displaying open channel pores, the N terminus of one subunit of the channel tetramer sticks into the pore and plugs it, with free energy simulations showing that this is a strong interaction. Deletion of this N terminus leads to functionally non-inactivating channels and structures of open states without a pore plug, indicating that this previously unresolved N-terminal peptide is responsible for a ball-and-chain inactivation mechanism.


  
Power generation from ambient humidity using protein nanowires 期刊论文
NATURE, 2020, 578 (7796) : 550-+
作者:  Luong, Duy X.;  Bets, Ksenia V.;  Algozeeb, Wala Ali;  Stanford, Michael G.;  Kittrell, Carter;  Chen, Weiyin;  Salvatierra, Rodrigo V.;  Ren, Muqing;  McHugh, Emily A.;  Advincula, Paul A.;  Wang, Zhe;  Bhatt, Mahesh;  Guo, Hua;  Mancevski, Vladimir;  Shahsavari, Rouzbeh;  Yakobson, Boris I.;  Tour, James M.
收藏  |  浏览/下载:85/0  |  提交时间:2020/07/03

Harvesting energy from the environment offers the promise of clean power for self-sustained systems(1,2). Known technologies-such as solar cells, thermoelectric devices and mechanical generators-have specific environmental requirements that restrict where they can be deployed and limit their potential for continuous energy production(3-5). The ubiquity of atmospheric moisture offers an alternative. However, existing moisture-based energy-harvesting technologies can produce only intermittent, brief (shorter than 50 seconds) bursts of power in the ambient environment, owing to the lack of a sustained conversion mechanism(6-12). Here we show that thin-film devices made from nanometre-scale protein wires harvested from the microbe Geobacter sulfurreducens can generate continuous electric power in the ambient environment. The devices produce a sustained voltage of around 0.5 volts across a 7-micrometre-thick film, with a current density of around 17 microamperes per square centimetre. We find the driving force behind this energy generation to be a self-maintained moisture gradient that forms within the film when the film is exposed to the humidity that is naturally present in air. Connecting several devices linearly scales up the voltage and current to power electronics. Our results demonstrate the feasibility of a continuous energy-harvesting strategy that is less restricted by location or environmental conditions than other sustainable approaches.


A new type of energy-harvesting device, based on protein nanowires from the microbe Geobacter sulforreducens, can generate a sustained power output by producing a moisture gradient across the nanowire film using natural humidity.


  
Structural basis of energy transfer in Porphyridium purpureum phycobilisome 期刊论文
NATURE, 2020
作者:  Long, Haizhen;  Zhang, Liwei;  Lv, Mengjie;  Wen, Zengqi;  Zhang, Wenhao;  Chen, Xiulan;  Zhang, Peitao;  Li, Tongqing;  Chang, Luyuan;  Jin, Caiwei;  Wu, Guozhao;  Wang, Xi;  Yang, Fuquan;  Pei, Jianfeng;  Chen, Ping;  Margueron, Raphael;  Deng, Haiteng;  Zhu, Mingzhao;  Li, Guohong
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03

The cryo-electron microscopy structure of a phycobilisome from the red alga Porphyridium purpureum reveals how aromatic interactions between the linker proteins and the chromophores drive a unidirectional transfer of energy.


Photosynthetic organisms have developed various light-harvesting systems to adapt to their environments(1). Phycobilisomes are large light-harvesting protein complexes found in cyanobacteria and red algae(2-4), although how the energies of the chromophores within these complexes are modulated by their environment is unclear. Here we report the cryo-electron microscopy structure of a 14.7-megadalton phycobilisome with a hemiellipsoidal shape from the red alga Porphyridium purpureum. Within this complex we determine the structures of 706 protein subunits, including 528 phycoerythrin, 72 phycocyanin, 46 allophycocyanin and 60 linker proteins. In addition, 1,598 chromophores are resolved comprising 1,430 phycoerythrobilin, 48 phycourobilin and 120 phycocyanobilin molecules. The markedly improved resolution of our structure compared with that of the phycobilisome of Griffithsia pacifica(5) enabled us to build an accurate atomic model of the P. purpureum phycobilisome system. The model reveals how the linker proteins affect the microenvironment of the chromophores, and suggests that interactions of the aromatic amino acids of the linker proteins with the chromophores may be a key factor in fine-tuning the energy states of the chromophores to ensure the efficient unidirectional transfer of energy.


  
An orbital water-ice cycle on comet 67P from colour changes 期刊论文
NATURE, 2020, 578 (7793) : 49-+
作者:  Oh, Myoung Hwan;  Cho, Min Gee;  Chung, Dong Young;  Park, Inchul;  Kwon, Youngwook Paul;  Ophus, Colin;  Kim, Dokyoon;  Kim, Min Gyu;  Jeong, Beomgyun;  Gu, X. Wendy;  Jo, Jinwoung;  Yoo, Ji Mun;  Hong, Jaeyoung;  McMains, Sara;  Kang, Kisuk;  Sung, Yung-Eun;  Alivisatos, A. Paul;  Hyeon, Taeghwan
收藏  |  浏览/下载:52/0  |  提交时间:2020/07/03

Solar heating of a cometary surface provides the energy necessary to sustain gaseous activity, through which dust is removed(1,2). In this dynamical environment, both the coma(3,4) and the nucleus(5,6) evolve during the orbit, changing their physical and compositional properties. The environment around an active nucleus is populated by dust grains with complex and variegated shapes(7), lifted and diffused by gases freed from the sublimation of surface ices(8,9). The visible colour of dust particles is highly variable: carbonaceous organic material-rich grains(10) appear red while magnesium silicate-rich(11,12) and water-ice-rich(13,14) grains appear blue, with some dependence on grain size distribution, viewing geometry, activity level and comet family type. We know that local colour changes are associated with grain size variations, such as in the bluer jets made of submicrometre grains on comet Hale-Bopp(15) or in the fragmented grains in the coma(16) of C/1999 S4 (LINEAR). Apart from grain size, composition also influences the coma'  s colour response, because transparent volatiles can introduce a substantial blueing in scattered light, as observed in the dust particles ejected after the collision of the Deep Impact probe with comet 9P/Tempel 1(17). Here we report observations of two opposite seasonal colour cycles in the coma and on the surface of comet 67P/Churyumov-Gerasimenko through its perihelion passage(18). Spectral analysis indicates an enrichment of submicrometre grains made of organic material and amorphous carbon in the coma, causing reddening during the passage. At the same time, the progressive removal of dust from the nucleus causes the exposure of more pristine and bluish icy layers on the surface. Far from the Sun, we find that the abundance of water ice on the nucleus is reduced owing to redeposition of dust and dehydration of the surface layer while the coma becomes less red.


  
The green flings: Norwegian oil and gas industry's engagement in offshore wind power 期刊论文
ENERGY POLICY, 2019, 127: 269-279
作者:  Makitie, Tuukka;  Normann, Hakon E.;  Thune, Taran M.;  Gonzalez, Jakoba Sraml
收藏  |  浏览/下载:9/0  |  提交时间:2019/11/26
Sustainable energy transition  Organizational environment  Oil and gas industry  Offshore wind power  Norway  
A Fuzzy Stochastic Model for Carbon Price Prediction Under the Effect of Demand-related Policy in China's Carbon Market 期刊论文
ECOLOGICAL ECONOMICS, 2019, 157: 253-265
作者:  Song, Yazhi;  Liu, Tiansen;  Liang, Dapeng;  Li, Yin;  Song, Xiaoqiu
收藏  |  浏览/下载:11/0  |  提交时间:2019/04/09
China'  s carbon market  Demand-related policy  Carbon price prediction  Shanghai Environment and Energy Exchange  Fuzzy stochastic model  
Pathways to a Resource-Efficient and Low-Carbon Europe 期刊论文
ECOLOGICAL ECONOMICS, 2019, 155: 88-104
作者:  Distelkamp, Martin;  Meyer, Mark
收藏  |  浏览/下载:5/0  |  提交时间:2019/04/09
Economy-energy-environment modelling  Material and energy use  Decoupling  Resource efficiency  Consumption-based accounting  Multi-region input-output model  Material footprint  Raw material equivalents  Dynamic assessment models  Macro-econometric models  
India's sustainable development goals - Glide path for India's power sector 期刊论文
ENERGY POLICY, 2018, 123: 325-336
作者:  Srikanth, R.
收藏  |  浏览/下载:6/0  |  提交时间:2019/04/09
Energy and environment  Renewable energy  Electricity policy  Power sector reforms  Low-carbon economy