GSTDTAP

浏览/检索结果: 共8条,第1-8条 帮助

已选(0)清除 条数/页:   排序方式:
Insights into the assembly and activation of the microtubule nucleator gamma-TuRC 期刊论文
NATURE, 2020, 578 (7795) : 467-+
作者:  Cyranoski, David
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Microtubules are dynamic polymers of alpha- and beta-tubulin and have crucial roles in cell signalling, cell migration, intracellular transport and chromosome segregation(1). They assemble de novo from alpha beta-tubulin dimers in an essential process termed microtubule nucleation. Complexes that contain the protein gamma-tubulin serve as structural templates for the microtubule nucleation reaction(2). In vertebrates, microtubules are nucleated by the 2.2-megadalton gamma-tubulin ring complex (gamma-TuRC), which comprises gamma-tubulin, five related gamma-tubulin complex proteins (GCP2-GCP6) and additional factors(3). GCP6 is unique among the GCP proteins because it carries an extended insertion domain of unknown function. Our understanding of microtubule formation in cells and tissues is limited by a lack of high-resolution structural information on the gamma-TuRC. Here we present the cryo-electron microscopy structure of gamma-TuRC from Xenopus laevis at 4.8 angstrom global resolution, and identify a 14-spoked arrangement of GCP proteins and gamma-tubulins in a partially flexible open left-handed spiral with a uniform sequence of GCP variants. By forming specific interactions with other GCP proteins, the GCP6-specific insertion domain acts as a scaffold for the assembly of the gamma-TuRC. Unexpectedly, we identify actin as a bona fide structural component of the gamma-TuRC with functional relevance in microtubule nucleation. The spiral geometry of gamma-TuRC is suboptimal for microtubule nucleation and a controlled conformational rearrangement of the gamma-TuRC is required for its activation. Collectively, our cryo-electron microscopy reconstructions provide detailed insights into the molecular organization, assembly and activation mechanism of vertebrate gamma-TuRC, and will serve as a framework for the mechanistic understanding of fundamental biological processes associated with microtubule nucleation, such as meiotic and mitotic spindle formation and centriole biogenesis(4).


The cryo-EM structure of the gamma-tubulin ring complex (gamma-TuRC) from Xenopus laevis provides insights into the molecular organization of the complex, and shows that actin is a structural component that is functionally relevant to microtubule nucleation.


  
Impaired cell fate through gain-of-function mutations in a chromatin reader 期刊论文
NATURE, 2020, 577 (7788) : 121-+
作者:  Wan, Liling;  Chong, Shasha;  Xuan, Fan;  Liang, Angela;  Cui, Xiaodong;  Gates, Leah;  Carroll, Thomas S.;  Li, Yuanyuan;  Feng, Lijuan;  Chen, Guochao;  Wang, Shu-Ping;  Ortiz, Michael V.;  Daley, Sara K.;  Wang, Xiaolu;  Xuan, Hongwen;  Kentsis, Alex;  Muir, Tom W.;  Roeder, Robert G.;  Li, Haitao;  Li, Wei;  Tjian, Robert;  Wen, Hong;  Allis, C. David
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Modifications of histone proteins have essential roles in normal development and human disease. Recognition of modified histones by '  reader'  proteins is a key mechanism that mediates the function of histone modifications, but how the dysregulation of these readers might contribute to disease remains poorly understood. We previously identified the ENL protein as a reader of histone acetylation via its YEATS domain, linking it to the expression of cancer-driving genes in acute leukaemia1. Recurrent hotspot mutations have been found in the ENL YEATS domain in Wilms tumour2,3, the most common type of paediatric kidney cancer. Here we show, using human and mouse cells, that these mutations impair cell-fate regulation by conferring gain-of-function in chromatin recruitment and transcriptional control. ENL mutants induce gene-expression changes that favour a premalignant cell fate, and, in an assay for nephrogenesis using murine cells, result in undifferentiated structures resembling those observed in human Wilms tumour. Mechanistically, although bound to largely similar genomic loci as the wild-type protein, ENL mutants exhibit increased occupancy at a subset of targets, leading to a marked increase in the recruitment and activity of transcription elongation machinery that enforces active transcription from target loci. Furthermore, ectopically expressed ENL mutants exhibit greater self-association and form discrete and dynamic nuclear puncta that are characteristic of biomolecular hubs consisting of local high concentrations of regulatory factors. Such mutation-driven ENL self-association is functionally linked to enhanced chromatin occupancy and gene activation. Collectively, our findings show that hotspot mutations in a chromatinreader domain drive self-reinforced recruitment, derailing normal cell-fate control during development and leading to an oncogenic outcome.


  
FACT caught in the act of manipulating the nucleosome 期刊论文
NATURE, 2020, 577 (7790) : 426-+
作者:  Shen, Helen
收藏  |  浏览/下载:4/0  |  提交时间:2020/07/03

The organization of genomic DNA into nucleosomes profoundly affects all DNA-related processes in eukaryotes. The histone chaperone known as '  facilitates chromatin transcription'  (FACT(1)) (consisting of subunits SPT16 and SSRP1) promotes both disassembly and reassembly of nucleosomes during gene transcription, DNA replication and DNA repair(2). However, the mechanism by which FACT causes these opposing outcomes is unknown. Here we report two cryo-electron-microscopic structures of human FACT in complex with partially assembled subnucleosomes, with supporting biochemical and hydrogen-deuterium exchange data. We find that FACT is engaged in extensive interactions with nucleosomal DNA and all histone variants. The large DNA-binding surface on FACT appears to be protected by the carboxy-terminal domains of both of its subunits, and this inhibition is released by interaction with H2A-H2B, allowing FACT-H2A-H2B to dock onto a complex containing DNA and histones H3 and H4 (ref. (3)). SPT16 binds nucleosomal DNA and tethers H2A-H2B through its carboxy-terminal domain by acting as a placeholder for DNA. SSRP1 also contributes to DNA binding, and can assume two conformations, depending on whether a second H2A-H2B dimer is present. Our data suggest a compelling mechanism for how FACT maintains chromatin integrity during polymerase passage, by facilitating removal of the H2A-H2B dimer, stabilizing intermediate subnucleosomal states and promoting nucleosome reassembly. Our findings reconcile discrepancies regarding the many roles of FACT and underscore the dynamic interactions between histone chaperones and nucleosomes.


  
Ball-and-chain inactivation in a calcium-gated potassium channel 期刊论文
NATURE, 2020, 580 (7802) : 288-+
作者:  Peron, Simon;  Pancholi, Ravi;  Voelcker, Bettina;  Wittenbach, Jason D.;  olafsdottir, H. Freyja;  Freeman, Jeremy;  Svoboda, Karel
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

Cryo-electron microscopy structures and molecular dynamics simulations of the calcium-activated potassium channel MthK from Methanobacterium thermoautotrophicum are used to show that gating of this channel involves a ball-and-chain inactivation mechanism mediated by a previously unresolved N-terminal peptide.


Inactivation is the process by which ion channels terminate ion flux through their pores while the opening stimulus is still present(1). In neurons, inactivation of both sodium and potassium channels is crucial for the generation of action potentials and regulation of firing frequency(1,2). A cytoplasmic domain of either the channel or an accessory subunit is thought to plug the open pore to inactivate the channel via a '  ball-and-chain'  mechanism(3-7). Here we use cryo-electron microscopy to identify the molecular gating mechanism in calcium-activated potassium channels by obtaining structures of the MthK channel from Methanobacterium thermoautotrophicum-a purely calcium-gated and inactivating channel-in a lipid environment. In the absence of Ca2+, we obtained a single structure in a closed state, which was shown by atomistic simulations to be highly flexible in lipid bilayers at ambient temperature, with large rocking motions of the gating ring and bending of pore-lining helices. In Ca2+-bound conditions, we obtained several structures, including multiple open-inactivated conformations, further indication of a highly dynamic protein. These different channel conformations are distinguished by rocking of the gating rings with respect to the transmembrane region, indicating symmetry breakage across the channel. Furthermore, in all conformations displaying open channel pores, the N terminus of one subunit of the channel tetramer sticks into the pore and plugs it, with free energy simulations showing that this is a strong interaction. Deletion of this N terminus leads to functionally non-inactivating channels and structures of open states without a pore plug, indicating that this previously unresolved N-terminal peptide is responsible for a ball-and-chain inactivation mechanism.


  
The structural basis for cohesin-CTCF-anchored loops 期刊论文
NATURE, 2020, 578 (7795) : 472-+
作者:  Li, Yan;  Haarhuis, Judith H. I.;  Sedeno Cacciatore, Angela;  Oldenkamp, Roel;  van Ruiten, Marjon S.;  Willems, Laureen;  Teunissen, Hans;  Muir, Kyle W.;  de Wit, Elzo;  Rowland, Benjamin D.;  Panne, Daniel
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Cohesin catalyses the folding of the genome into loops that are anchored by CTCF1. The molecular mechanism of how cohesin and CTCF structure the 3D genome has remained unclear. Here we show that a segment within the CTCF N terminus interacts with the SA2-SCC1 subunits of human cohesin. We report a crystal structure of SA2-SCC1 in complex with CTCF at a resolution of 2.7 angstrom, which reveals the molecular basis of the interaction. We demonstrate that this interaction is specifically required for CTCF-anchored loops and contributes to the positioning of cohesin at CTCF binding sites. A similar motif is present in a number of established and newly identified cohesin ligands, including the cohesin release factor WAPL(2,3). Our data suggest that CTCF enables the formation of chromatin loops by protecting cohesin against loop release. These results provide fundamental insights into the molecular mechanism that enables the dynamic regulation of chromatin folding by cohesin and CTCF.


The crystal structure of the SA2-SCC1 subunits of human cohesin in complex with CTCF reveals the molecular basis of the cohesin-CTCF interaction that enables the dynamic regulation of chromatin folding.


  
Asymmetric impact of East Asian jet's variation on midsummer rainfall in North China and Yangtze River Valley 期刊论文
CLIMATE DYNAMICS, 2019, 53: 6199-6213
作者:  Wang, Shixin;  Zuo, Hongchao;  Yin, Yixing;  Wang, Jujie;  Ma, Xieyao
收藏  |  浏览/下载:6/0  |  提交时间:2019/11/27
Asymmetric relationship  East Asian westerly jet  Midsummer rainfall  Yangtze River Valley  North China  Dynamic mechanism  
Do Clean Development Mechanism Projects Generate Local Employment? Testing for Sectoral Effects across Brazilian Municipalities 期刊论文
ECOLOGICAL ECONOMICS, 2019, 157: 47-60
作者:  Mori-Clement, Yadira;  Bednar-Friedl, Birgit
收藏  |  浏览/下载:4/0  |  提交时间:2019/04/09
Employment Generation  Renewable Energy  Hydro and Methane Avoidance Projects  Clean Development Mechanism  CER Crisis  Dynamic Panel Model  
A competitive carbon emissions scheme with hybrid fiscal incentives: The evidence from a taxi industry 期刊论文
ENERGY POLICY, 2017, 102
作者:  Liu, Yang;  Han, Liyan;  Yin, Ziqiao;  Luo, Kongyi
收藏  |  浏览/下载:10/0  |  提交时间:2019/04/09
Dynamic evolution  Endogenous equilibrium  Carbon emissions standards  Hybrid mechanism  Carbon taxes  Incentive system  Adjustment factor