GSTDTAP

浏览/检索结果: 共14条,第1-10条 帮助

限定条件                
已选(0)清除 条数/页:   排序方式:
新研究利用光纤传感技术测量格陵兰冰盖温度 快报文章
地球科学快报,2021年第10期
作者:  刘文浩
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:445/1  |  提交时间:2021/05/25
The Greenland ice sheet  Light sensing technology  
研究人员模拟了过去和未来格陵兰北部冰川洪水事件 快报文章
地球科学快报,2021年第8期
作者:  王立伟
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:441/0  |  提交时间:2021/04/25
Modeling  glacial floods  Greenland  
英国智库:五眼联盟应促进与格陵兰的关系以确保稀土供应 快报文章
地球科学快报,2021年第6期
作者:  刘学
Microsoft Word(22Kb)  |  收藏  |  浏览/下载:474/0  |  提交时间:2021/03/24
Five Eyes  critical minerals  rare earth  Greenland  
The timing and effect of the earliest human arrivals in North America 期刊论文
NATURE, 2020
作者:  Lorena Becerra-Valdivia;  Thomas Higham
收藏  |  浏览/下载:26/0  |  提交时间:2020/08/09

The peopling of the Americas marks a major expansion of humans across the planet. However, questions regarding the timing and mechanisms of this dispersal remain, and the previously accepted model (termed '  Clovis-first'  )-suggesting that the first inhabitants of the Americas were linked with the Clovis tradition, a complex marked by distinctive fluted lithic points(1)-has been effectively refuted. Here we analyse chronometric data from 42 North American and Beringian archaeological sites using a Bayesian age modelling approach, and use the resulting chronological framework to elucidate spatiotemporal patterns of human dispersal. We then integrate these patterns with the available genetic and climatic evidence. The data obtained show that humans were probably present before, during and immediately after the Last Glacial Maximum (about 26.5-19 thousand years ago)(2,3)but that more widespread occupation began during a period of abrupt warming, Greenland Interstadial 1 (about 14.7-12.9 thousand years beforead 2000)(4). We also identify the near-synchronous commencement of Beringian, Clovis and Western Stemmed cultural traditions, and an overlap of each with the last dates for the appearance of 18 now-extinct faunal genera. Our analysis suggests that the widespread expansion of humans through North America was a key factor in the extinction of large terrestrial mammals.


A Bayesian age model suggests that human dispersal to the Americas probably began before the Last Glacial Maximum, overlapping with the last dates of appearance for several faunal genera.


  
Ruthenium isotope vestige of Earth's pre-late-veneer mantle preserved in Archaean rocks 期刊论文
NATURE, 2020, 579 (7798) : 240-+
作者:  Abadie, Valerie;  Kim, Sangman M.;  Lejeune, Thomas;  Palanski, Brad A.;  Ernest, Jordan D.;  Tastet, Olivier;  Voisine, Jordan;  Discepolo, Valentina;  Marietta, Eric, V;  Hawash, Mohamed B. F.;  Ciszewski, Cezary;  Bouziat, Romain;  Panigrahi, Kaushik;  Horwath, Irina;  Zurenski, Matthew A.;  Lawrence, Ian;  Dumaine, Anne;  Yotova, Vania;  Grenier, Jean-Christophe;  Murray, Joseph A.;  Khosla, Chaitan;  Barreiro, Luis B.;  Jabri, Bana
收藏  |  浏览/下载:31/0  |  提交时间:2020/05/13

The accretion of volatile-rich material from the outer Solar System represents a crucial prerequisite for Earth to develop oceans and become a habitable planet(1-4). However, the timing of this accretion remains controversial(5-8). It has been proposed that volatile elements were added to Earth by the late accretion of a late veneer consisting of carbonaceous-chondrite-like material after core formation had ceased(6,9,10). This view could not be reconciled with the ruthenium (Ru) isotope composition of carbonaceous chondrites(5,11), which is distinct from that of the modern mantle(12), or of any known meteorite group(5). As a possible solution, Earth'  s pre-late-veneer mantle could already have contained a fraction of Ru that was not fully extracted by core formation(13). The presence of such pre-late-veneer Ru can only be established if its isotope composition is distinct from that of the modern mantle. Here we report the first high-precision, mass-independent Ru isotope compositions for Eoarchaean ultramafic rocks from southwest Greenland, which display a relative Ru-100 excess of 22 parts per million compared with the modern mantle value. This Ru-100 excess indicates that the source of the Eoarchaean rocks already contained a substantial fraction of Ru before the accretion of the late veneer. By 3.7 billion years ago, the mantle beneath southwest Greenland had not yet fully equilibrated with late accreted material. Otherwise, no Ru isotopic difference relative to the modern mantle would be observed. If constraints from other highly siderophile elements besides Ru are also considered(14), the composition of the modern mantle can only be reconciled if the late veneer contained substantial amounts of carbonaceous-chondrite-like materials with their characteristic Ru-100 deficits. These data therefore relax previous constraints on the late veneer and are consistent with volatile-rich material from the outer Solar System being delivered to Earth during late accretion.


  
Oceanic forcing of penultimate deglacial and last interglacial sea-level rise 期刊论文
NATURE, 2020, 577 (7792) : 660-+
作者:  Rizal, Yan;  Westaway, Kira E.;  Zaim, Yahdi;  van den Bergh, Gerrit D.;  Bettis, E. Arthur, III;  Morwood, Michael J.;  Huffman, O. Frank;  Grun, Rainer;  Joannes-Boyau, Renaud;  Bailey, Richard M.;  Sidarto;  Westaway, Michael C.;  Kurniawan, Iwan;  Moore, Mark W.;  Storey, Michael;  Aziz, Fachroel;  Suminto;  Zhao, Jian-xin;  Aswan;  Sipola, Maija E.;  Larick, Roy;  Zonneveld, John-Paul;  Scott, Robert;  Putt, Shelby;  Ciochon, Russell L.
收藏  |  浏览/下载:21/0  |  提交时间:2020/05/13

Sea-level histories during the two most recent deglacial-interglacial intervals show substantial differences(1-3) despite both periods undergoing similar changes in global mean temperature(4,5) and forcing from greenhouse gases(6). Although the last interglaciation (LIG) experienced stronger boreal summer insolation forcing than the present interglaciation(7), understanding why LIG global mean sea level may have been six to nine metres higher than today has proven particularly challenging(2). Extensive areas of polar ice sheets were grounded below sea level during both glacial and interglacial periods, with grounding lines and fringing ice shelves extending onto continental shelves(8). This suggests that oceanic forcing by subsurface warming may also have contributed to ice-sheet loss(9-12) analogous to ongoing changes in the Antarctic(13,14) and Greenland(15) ice sheets. Such forcing would have been especially effective during glacial periods, when the Atlantic Meridional Overturning Circulation (AMOC) experienced large variations on millennial timescales(16), with a reduction of the AMOC causing subsurface warming throughout much of the Atlantic basin(9,12,17). Here we show that greater subsurface warming induced by the longer period of reduced AMOC during the penultimate deglaciation can explain the more-rapid sea-level rise compared with the last deglaciation. This greater forcing also contributed to excess loss from the Greenland and Antarctic ice sheets during the LIG, causing global mean sea level to rise at least four metres above modern levels. When accounting for the combined influences of penultimate and LIG deglaciation on glacial isostatic adjustment, this excess loss of polar ice during the LIG can explain much of the relative sea level recorded by fossil coral reefs and speleothems at intermediate- and far-field sites.


  
A low climate threshold for south Greenland Ice Sheet demise during the Late Pleistocene 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (1) : 190-195
作者:  Irvali, Nil;  Galaasen, Eirik V.;  Ninnemann, Ulysses S.;  Rosenthal, Yair;  Born, Andreas;  Kleiven, Helga (Kikki) F.
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
Greenland Ice Sheet  Late Pleistocene interglacials  climate change  thresholds  
Mass balance of the Greenland Ice Sheet from 1992 to 2018 期刊论文
NATURE, 2020, 579 (7798) : 233-+
作者:  Scudellari, Megan
收藏  |  浏览/下载:11/0  |  提交时间:2020/04/16

The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades(1,2), and it is expected to continue to be so(3). Although increases in glacier flow(4-6) and surface melting(7-9) have been driven by oceanic(10-12) and atmospheric(13,14) warming, the magnitude and trajectory of the ice sheet'  s mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet'  s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 +/- 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 +/- 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 +/- 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 +/- 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 +/- 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 +/- 37 billion tonnes per year in the 1990s to 87 +/- 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 +/- 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions(15) and ocean temperatures fell at the terminus of Jakobshavn Isbr AE(16). Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario(17), which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate.


  
Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (19) : 9239-9244
作者:  Mouginot, Jeremie;  Rignot, Eric;  Bjork, Anders A.;  van den Broeke, Michiel;  Millan, Romain;  Morlighem, Mathieu;  Noel, Brice;  Scheuchl, Bernd;  Wood, Michael
收藏  |  浏览/下载:52/0  |  提交时间:2019/11/27
Greenland  glaciology  sea level  climate change  glaciers  
Ice sheet contributions to future sea-level rise from structured expert judgment 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (23) : 11195-11200
作者:  Bamber, Jonathan L.;  Oppenheimer, Michael;  Kopp, Robert E.;  Aspinall, Willy P.;  Cooke, Roger M.
收藏  |  浏览/下载:15/0  |  提交时间:2019/11/27
sea-level rise  climate predictions  ice sheets  Greenland  Antarctica