GSTDTAP

浏览/检索结果: 共48条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Science:科罗拉多河流量大幅下降 快报文章
资源环境快报,2021年第11期
作者:  魏艳红
Microsoft Word(19Kb)  |  收藏  |  浏览/下载:496/0  |  提交时间:2021/06/17
SSPP  Colorado River  Risk  Runoff efficiency  
格陵兰冰盖径流量显著增强 快报文章
资源环境快报,2021年第21期
作者:  董利苹
Microsoft Word(13Kb)  |  收藏  |  浏览/下载:683/0  |  提交时间:2021/11/15
Greenland Ice Sheet Runoff  Variability  Satellite Observations  
A Process-Based Framework to Characterize and Classify Runoff Events: The Event Typology of Germany 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (5)
作者:  Tarasova, L.;  Basso, S.;  Wendi, D.;  Viglione, A.;  Kumar, R.;  Merz, R.
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02
event classification  event type  rainfall-runoff events  event typology  event characteristics  runoff generation mechanisms  
Many Commonly Used Rainfall-Runoff Models Lack Long, Slow Dynamics: Implications for Runoff Projections 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (5)
作者:  Fowler, Keirnan;  Knoben, Wouter J. M.;  Peel, Murray C.;  Peterson, Tim J.;  Ryu, Dongryeol;  Saft, Margarita;  Seo, Ki-Weon;  Western, Andrew
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
rainfall-runoff modeling  drought  climate change  
Using Particle Tracking to Understand Flow Paths, Age Distributions, and the Paradoxical Origins of the Inverse Storage Effect in an Experimental Catchment 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (4)
作者:  Wilusz, D. C.;  Harman, C. J.;  Ball, W. P.;  Maxwell, R. M.;  Buda, A. R.
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/02
integrated hydrology model  transit time model  runoff generation mechanisms  particle tracking  storage selection functions  
Hydrologically Informed Machine Learning for Rainfall-Runoff Modeling: A Genetic Programming-Based Toolkit for Automatic Model Induction 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (4)
作者:  Chadalawada, Jayashree;  Herath, H. M. V. V.;  Babovic, Vladan
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/02
rainfall-runoff modeling  flexible conceptual modeling framework  machine learning  genetic programming  
Resolving Drivers of a Spatial Gradient in Evapotranspiration Through the Simulated Translocation of Landscape Factors 期刊论文
WATER RESOURCES RESEARCH, 2020, 56 (2)
作者:  Jepsen, S. M.;  Harmon, T. C.
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/02
evapotranspiration  runoff  climate warming  space-for-time substitution  elevation  soil type  
Rainfall-Runoff Modeling Using Crowdsourced Water Level Data 期刊论文
WATER RESOURCES RESEARCH, 2019, 55 (12) : 10856-10871
作者:  Weeser, B.;  Jacobs, S.;  Kraft, P.;  Rufno, M. C.;  Breuer, L.
收藏  |  浏览/下载:12/0  |  提交时间:2020/02/16
citizen science  crowdsource  water level  discharge  water balance  rainfall-runoff modeling  
Examining Observed Rainfall, Soil Moisture, and River Network Variabilities on Peak Flow Scaling of Rainfall-Runoff Events with Implications on Regionalization of Peak Flow Quantiles 期刊论文
WATER RESOURCES RESEARCH, 2019, 55 (12) : 10707-10726
作者:  Perez, Gabriel;  Mantilla, Ricardo;  Krajewski, Witold F.;  Quintero, Felipe
收藏  |  浏览/下载:7/0  |  提交时间:2020/02/16
peak flow scaling  rainfall variability  soil moisture variability  regional regression  rainfall-runoff event  peak flow quantile  
Mass balance of the Greenland Ice Sheet from 1992 to 2018 期刊论文
NATURE, 2020, 579 (7798) : 233-+
作者:  Scudellari, Megan
收藏  |  浏览/下载:11/0  |  提交时间:2020/04/16

The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades(1,2), and it is expected to continue to be so(3). Although increases in glacier flow(4-6) and surface melting(7-9) have been driven by oceanic(10-12) and atmospheric(13,14) warming, the magnitude and trajectory of the ice sheet'  s mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet'  s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 +/- 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 +/- 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 +/- 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 +/- 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 +/- 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 +/- 37 billion tonnes per year in the 1990s to 87 +/- 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 +/- 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions(15) and ocean temperatures fell at the terminus of Jakobshavn Isbr AE(16). Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario(17), which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate.