GSTDTAP

浏览/检索结果: 共34条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Airborne particles might grow fast in cities 期刊论文
NATURE, 2020, 581 (7807) : 145-146
作者:  Boyd, Ian
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/03

Nanoscale particles have been observed to form and grow in the atmospheres of many cities, contradicting our understanding of particle-formation processes. Experiments now reveal a possible explanation for this mystery.


Rapid condensation of ammonium nitrate on small atmospheric particles.


  
Short-term tests validate long-term estimates of climate change 期刊论文
NATURE, 2020, 582 (7811) : 185-186
作者:  Tollefson, Jeff
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

Climate sensitivity to atmospheric CO2 levels is likely to be high.


Six-hour weather forecasts have been used to validate estimates of climate change hundreds of years from now. Such tests have great potential - but only if our weather-forecasting and climate-prediction systems are unified.


  
A plant genetic network for preventing dysbiosis in the phyllosphere 期刊论文
NATURE, 2020, 580 (7805) : 653-+
作者:  van den Brink, Susanne C.;  Alemany, Anna;  van Batenburg, Vincent;  Moris, Naomi;  Blotenburg, Marloes;  Vivie, Judith;  Baillie-Johnson, Peter;  Nichols, Jennifer;  Sonnen, Katharina F.;  Martinez Arias, Alfonso;  van Oudenaarden, Alexander
收藏  |  浏览/下载:59/0  |  提交时间:2020/07/03

Mutations in genes involved in immune signalling and vesicle trafficking cause defects in the leaf microbiome of Arabidopsis thaliana that result in damage to leaf tissues, suggesting mechanisms by which terrestrial plants control the level and diversity of endophytic phyllosphere microbiota.


The aboveground parts of terrestrial plants, collectively called the phyllosphere, have a key role in the global balance of atmospheric carbon dioxide and oxygen. The phyllosphere represents one of the most abundant habitats for microbiota colonization. Whether and how plants control phyllosphere microbiota to ensure plant health is not well understood. Here we show that the Arabidopsis quadruple mutant (min7 fls2 efr cerk1  hereafter, mfec)(1), simultaneously defective in pattern-triggered immunity and the MIN7 vesicle-trafficking pathway, or a constitutively activated cell death1 (cad1) mutant, carrying a S205F mutation in a membrane-attack-complex/perforin (MACPF)-domain protein, harbour altered endophytic phyllosphere microbiota and display leaf-tissue damage associated with dysbiosis. The Shannon diversity index and the relative abundance of Firmicutes were markedly reduced, whereas Proteobacteria were enriched in the mfec and cad1(S205F) mutants, bearing cross-kingdom resemblance to some aspects of the dysbiosis that occurs in human inflammatory bowel disease. Bacterial community transplantation experiments demonstrated a causal role of a properly assembled leaf bacterial community in phyllosphere health. Pattern-triggered immune signalling, MIN7 and CAD1 are found in major land plant lineages and are probably key components of a genetic network through which terrestrial plants control the level and nurture the diversity of endophytic phyllosphere microbiota for survival and health in a microorganism-rich environment.


  
Nightside condensation of iron in an ultrahot giant exoplanet 期刊论文
NATURE, 2020, 580 (7805) : 597-+
作者:  Lu, Zhihao;  Zou, Jianling;  Li, Shuang;  Topper, Michael J.;  Tao, Yong;  Zhang, Hao;  Jiao, Xi;  Xie, Wenbing;  Kong, Xiangqian;  Vaz, Michelle;  Li, Huili;  Cai, Yi;  Xia, Limin;  Huang, Peng;  Rodgers, Kristen;  Lee, Beverly;  Riemer, Joanne B.;  Day, Chi-Ping;  Yen, Ray-Whay Chiu;  Cui, Ying;  Wang, Yujiao;  Wang, Yanni;  Zhang, Weiqiang;  Easwaran, Hariharan;  Hulbert, Alicia;  Kim, KiBem;  Juergens, Rosalyn A.;  Yang, Stephen C.;  Battafarano, Richard J.;  Bush, Errol L.;  Broderick, Stephen R.;  Cattaneo, Stephen M.;  Brahmer, Julie R.;  Rudin, Charles M.;  Wrangle, John;  Mei, Yuping;  Kim, Young J.;  Zhang, Bin;  Wang, Ken Kang-Hsin;  Forde, Patrick M.;  Margolick, Joseph B.;  Nelkin, Barry D.;  Zahnow, Cynthia A.;  Pardoll, Drew M.;  Housseau, Franck;  Baylin, Stephen B.;  Shen, Lin;  Brock, Malcolm V.
收藏  |  浏览/下载:63/0  |  提交时间:2020/07/03

Ultrahot giant exoplanets receive thousands of times Earth'  s insolation(1,2). Their high-temperature atmospheres (greater than 2,000 kelvin) are ideal laboratories for studying extreme planetary climates and chemistry(3-5). Daysides are predicted to be cloud-free, dominated by atomic species(6) and much hotter than nightsides(5,7,8). Atoms are expected to recombine into molecules over the nightside(9), resulting in different day and night chemistries. Although metallic elements and a large temperature contrast have been observed(10-14), no chemical gradient has been measured across the surface of such an exoplanet. Different atmospheric chemistry between the day-to-night ('  evening'  ) and night-to-day ('  morning'  ) terminators could, however, be revealed as an asymmetric absorption signature during transit(4,7,15). Here we report the detection of an asymmetric atmospheric signature in the ultrahot exoplanet WASP-76b. We spectrally and temporally resolve this signature using a combination of high-dispersion spectroscopy with a large photon-collecting area. The absorption signal, attributed to neutral iron, is blueshifted by -11 +/- 0.7 kilometres per second on the trailing limb, which can be explained by a combination of planetary rotation and wind blowing from the hot dayside(16). In contrast, no signal arises from the nightside close to the morning terminator, showing that atomic iron is not absorbing starlight there. We conclude that iron must therefore condense during its journey across the nightside.


Absorption lines of iron in the dayside atmosphere of an ultrahot giant exoplanet disappear after travelling across the nightside, showing that the iron has condensed during its travel.


  
Power generation from ambient humidity using protein nanowires 期刊论文
NATURE, 2020, 578 (7796) : 550-+
作者:  Luong, Duy X.;  Bets, Ksenia V.;  Algozeeb, Wala Ali;  Stanford, Michael G.;  Kittrell, Carter;  Chen, Weiyin;  Salvatierra, Rodrigo V.;  Ren, Muqing;  McHugh, Emily A.;  Advincula, Paul A.;  Wang, Zhe;  Bhatt, Mahesh;  Guo, Hua;  Mancevski, Vladimir;  Shahsavari, Rouzbeh;  Yakobson, Boris I.;  Tour, James M.
收藏  |  浏览/下载:85/0  |  提交时间:2020/07/03

Harvesting energy from the environment offers the promise of clean power for self-sustained systems(1,2). Known technologies-such as solar cells, thermoelectric devices and mechanical generators-have specific environmental requirements that restrict where they can be deployed and limit their potential for continuous energy production(3-5). The ubiquity of atmospheric moisture offers an alternative. However, existing moisture-based energy-harvesting technologies can produce only intermittent, brief (shorter than 50 seconds) bursts of power in the ambient environment, owing to the lack of a sustained conversion mechanism(6-12). Here we show that thin-film devices made from nanometre-scale protein wires harvested from the microbe Geobacter sulfurreducens can generate continuous electric power in the ambient environment. The devices produce a sustained voltage of around 0.5 volts across a 7-micrometre-thick film, with a current density of around 17 microamperes per square centimetre. We find the driving force behind this energy generation to be a self-maintained moisture gradient that forms within the film when the film is exposed to the humidity that is naturally present in air. Connecting several devices linearly scales up the voltage and current to power electronics. Our results demonstrate the feasibility of a continuous energy-harvesting strategy that is less restricted by location or environmental conditions than other sustainable approaches.


A new type of energy-harvesting device, based on protein nanowires from the microbe Geobacter sulforreducens, can generate a sustained power output by producing a moisture gradient across the nanowire film using natural humidity.


  
Mass balance of the Greenland Ice Sheet from 1992 to 2018 期刊论文
NATURE, 2020, 579 (7798) : 233-+
作者:  Scudellari, Megan
收藏  |  浏览/下载:11/0  |  提交时间:2020/04/16

The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades(1,2), and it is expected to continue to be so(3). Although increases in glacier flow(4-6) and surface melting(7-9) have been driven by oceanic(10-12) and atmospheric(13,14) warming, the magnitude and trajectory of the ice sheet'  s mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet'  s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 +/- 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 +/- 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 +/- 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 +/- 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 +/- 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 +/- 37 billion tonnes per year in the 1990s to 87 +/- 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 +/- 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions(15) and ocean temperatures fell at the terminus of Jakobshavn Isbr AE(16). Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario(17), which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate.


  
Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (18) : 8657-8666
作者:  An, Zhisheng;  Huang, Ru-Jin;  Zhang, Renyi;  Tie, Xuexi;  Li, Guohui;  Cao, Junji;  Zhou, Weijian;  Shi, Zhengguo;  Han, Yongming;  Gu, Zhaolin;  Ji, Yuemeng
收藏  |  浏览/下载:11/0  |  提交时间:2019/11/27
severe haze  synergetic effects  anthropogenic emission  atmospheric chemistry  climate change  
Mean precipitation change from a deepening troposphere 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (45) : 11465-11470
作者:  Jeevanjee, Nadir;  Romps, David M.
收藏  |  浏览/下载:5/0  |  提交时间:2019/11/27
climate change  atmospheric sciences  hydrological cycle  atmospheric radiation  
Natural forcing of the North Atlantic nitrogen cycle in the Anthropocene 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (42) : 10606-10611
作者:  Wang, Xingchen Tony;  Cohen, Anne L.;  Luu, Victoria;  Ren, Haojia;  Su, Zhan;  Haug, Gerald H.;  Sigman, Daniel M.
收藏  |  浏览/下载:7/0  |  提交时间:2019/11/27
North Atlantic  nitrogen cycle  Anthropocene  atmospheric deposition  
Synergistic O-3 + OH oxidation pathway to extremely low-volatility dimers revealed in beta-pinene secondary organic aerosol 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (33) : 8301-8306
作者:  Kenseth, Christopher M.;  Huang, Yuanlong;  Zhao, Ran;  Dalleska, Nathan F.;  Hethcox, Caleb;  Stoltz, Brian M.;  Seinfeld, John H.
收藏  |  浏览/下载:13/0  |  提交时间:2019/11/27
secondary organic aerosol  synergistic oxidation  atmospheric accretion chemistry  dimer formation  monoterpenes