GSTDTAP

浏览/检索结果: 共15条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet 期刊论文
Proceedings of the National Academy of Sciences, 2020
作者:  Tao Su;  Robert A. Spicer;  Fei-Xiang Wu;  Alexander Farnsworth;  Jian Huang;  Cédric Del Rio;  Tao Deng;  Lin Ding;  Wei-Yu-Dong Deng;  Yong-Jiang Huang;  Alice Hughes;  Lin-Bo Jia;  Jian-Hua Jin;  Shu-Feng Li;  Shui-Qing Liang;  Jia Liu;  Xiao-Yan Liu;  Sarah Sherlock;  Teresa Spicer;  Gaurav Srivastava;  He Tang;  Paul Valdes;  Teng-Xiang Wang;  Mike Widdowson;  Meng-Xiao Wu;  Yao-Wu Xing;  Cong-Li Xu;  Jian Yang;  Cong Zhang;  Shi-Tao Zhang;  Xin-Wen Zhang;  Fan Zhao;  Zhe-Kun Zhou
收藏  |  浏览/下载:13/0  |  提交时间:2020/12/22
Self-consistent kinetic model of nested electron- and ion-scale magnetic cavities in space plasmas 期刊论文
Nature Communications, 2020
作者:  Jing-Huan Li;  Fan Yang;  Xu-Zhi Zhou;  Qiu-Gang Zong;  Anton V. Artemyev;  Robert Rankin;  Quanqi Shi;  Shutao Yao;  Han Liu;  Jiansen He;  Zuyin Pu;  Chijie Xiao;  Ji Liu;  Craig Pollock;  Guan Le;  James L. Burch
收藏  |  浏览/下载:14/0  |  提交时间:2020/11/09
Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy 期刊论文
Science, 2020
作者:  Hongjing Gu;  Qi Chen;  Guan Yang;  Lei He;  Hang Fan;  Yong-Qiang Deng;  Yanxiao Wang;  Yue Teng;  Zhongpeng Zhao;  Yujun Cui;  Yuchang Li;  Xiao-Feng Li;  Jiangfan Li;  Na-Na Zhang;  Xiaolan Yang;  Shaolong Chen;  Yan Guo;  Guangyu Zhao;  Xiliang Wang;  De-Yan Luo;  Hui Wang;  Xiao Yang;  Yan Li;  Gencheng Han;  Yuxian He;  Xiaojun Zhou;  Shusheng Geng;  Xiaoli Sheng;  Shibo Jiang;  Shihui Sun;  Cheng-Feng Qin;  Yusen Zhou
收藏  |  浏览/下载:16/0  |  提交时间:2020/09/30
Bacteria are important dimethylsulfoniopropionate producers in marine aphotic and high-pressure environments 期刊论文
Nature Communications, 2020
作者:  Yanfen Zheng;  Jinyan Wang;  Shun Zhou;  Yunhui Zhang;  Ji Liu;  Chun-Xu Xue;  Beth T. Williams;  Xiuxiu Zhao;  Li Zhao;  Xiao-Yu Zhu;  Chuang Sun;  Hong-Hai Zhang;  Tian Xiao;  Gui-Peng Yang;  Jonathan D. Todd;  Xiao-Hua Zhang
收藏  |  浏览/下载:9/0  |  提交时间:2020/09/22
First look by the Yutu-2 rover at the deep subsurface structure at the lunar farside 期刊论文
Nature Communications, 2020
作者:  Jialong Lai;  Yi Xu;  Roberto Bugiolacchi;  Xu Meng;  Long Xiao;  Minggang Xie;  Bin Liu;  Kaichang Di;  Xiaoping Zhang;  Bin Zhou;  Shaoxiang Shen;  Luyuan Xu
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/14
Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics 期刊论文
Science, 2020
作者:  Lijun Liu;  Jie Han;  Lin Xu;  Jianshuo Zhou;  Chenyi Zhao;  Sujuan Ding;  Huiwen Shi;  Mengmeng Xiao;  Li Ding;  Ze Ma;  Chuanhong Jin;  Zhiyong Zhang;  Lian-Mao Peng
收藏  |  浏览/下载:7/0  |  提交时间:2020/05/25
Structure of nevanimibe-bound tetrameric human ACAT1 期刊论文
NATURE, 2020, 581 (7808) : 339-U214
作者:  Ma, Xiyu;  Claus, Lucas A. N.;  Leslie, Michelle E.;  Tao, Kai;  Wu, Zhiping;  Liu, Jun;  Yu, Xiao;  Li, Bo;  Zhou, Jinggeng;  Savatin, Daniel V.;  Peng, Junmin;  Tyler, Brett M.;  Heese, Antje;  Russinova, Eugenia;  He, Ping;  Shan, Libo
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

The structure of human ACAT1 in complex with the inhibitor nevanimibe is resolved by cryo-electron microscopy.


Cholesterol is an essential component of mammalian cell membranes, constituting up to 50% of plasma membrane lipids. By contrast, it accounts for only 5% of lipids in the endoplasmic reticulum (ER)(1). The ER enzyme sterol O-acyltransferase 1 (also named acyl-coenzyme A:cholesterol acyltransferase, ACAT1) transfers a long-chain fatty acid to cholesterol to form cholesteryl esters that coalesce into cytosolic lipid droplets. Under conditions of cholesterol overload, ACAT1 maintains the low cholesterol concentration of the ER and thereby has an essential role in cholesterol homeostasis(2,3). ACAT1 has also been implicated in Alzheimer'  s disease(4), atherosclerosis(5) and cancers(6). Here we report a cryo-electron microscopy structure of human ACAT1 in complex with nevanimibe(7), an inhibitor that is in clinical trials for the treatment of congenital adrenal hyperplasia. The ACAT1 holoenzyme is a tetramer that consists of two homodimers. Each monomer contains nine transmembrane helices (TMs), six of which (TM4-TM9) form a cavity that accommodates nevanimibe and an endogenous acyl-coenzyme A. This cavity also contains a histidine that has previously been identified as essential for catalytic activity(8). Our structural data and biochemical analyses provide a physical model to explain the process of cholesterol esterification, as well as details of the interaction between nevanimibe and ACAT1, which may help to accelerate the development of ACAT1 inhibitors to treat related diseases.


  
A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by T-reg cells 期刊论文
NATURE, 2020
作者:  Ma, Xiyu;  Claus, Lucas A. N.;  Leslie, Michelle E.;  Tao, Kai;  Wu, Zhiping;  Liu, Jun;  Yu, Xiao;  Li, Bo;  Zhou, Jinggeng;  Savatin, Daniel V.;  Peng, Junmin;  Tyler, Brett M.;  Heese, Antje;  Russinova, Eugenia;  He, Ping;  Shan, Libo
收藏  |  浏览/下载:39/0  |  提交时间:2020/07/03

Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers(1). The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.5(2-7) contains a distal enhancer that is functional in CD4(+) regulatory T (T-reg) cells and required for T-reg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-kappa B to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3(+) T-reg cells, which are unable to control colitis in a cell-transfer model of the disease. In human T-reg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.


Shared synteny guides loss-of-function analysis of human enhancer homologues in mice, identifying a distal enhancer at the autoimmune and allergic disease risk locus at chromosome 11q13.5 whose function in regulatory T cells provides a mechanistic basis for its role in disease.


  
Traits mediate drought effects on wood carbon fluxes 期刊论文
Global Change Biology, 2020
作者:  Zhenhong Hu;  Han Y. H. Chen;  Chao Yue;  Xiao Ying Gong;  Junjiong Shao;  Guiyao Zhou;  Jiawei Wang;  Minhuang Wang;  Jianyang Xia;  Yongtao Li;  Xuhui Zhou;  Sean T. Michaletz
收藏  |  浏览/下载:13/0  |  提交时间:2020/05/13
Notch signalling drives synovial fibroblast identity and arthritis pathology 期刊论文
NATURE, 2020, 582 (7811) : 259-+
作者:  Han, Xiaoping;  Zhou, Ziming;  Fei, Lijiang;  Sun, Huiyu;  Wang, Renying;  Chen, Yao;  Chen, Haide;  Wang, Jingjing;  Tang, Huanna;  Ge, Wenhao;  Zhou, Yincong;  Ye, Fang;  Jiang, Mengmeng;  Wu, Junqing;  Xiao, Yanyu;  Jia, Xiaoning;  Zhang, Tingyue;  Ma, Xiaojie;  Zhang, Qi;  Bai, Xueli;  Lai, Shujing;  Yu, Chengxuan;  Zhu, Lijun;  Lin, Rui;  Gao, Yuchi;  Wang, Min;  Wu, Yiqing;  Zhang, Jianming;  Zhan, Renya;  Zhu, Saiyong;  Hu, Hailan;  Wang, Changchun;  Chen, Ming;  Huang, He;  Liang, Tingbo;  Chen, Jianghua;  Wang, Weilin;  Zhang, Dan;  Guo, Guoji
收藏  |  浏览/下载:43/0  |  提交时间:2020/07/03

NOTCH3 signalling is shown to be the underlying driver of the differentiation and expansion of a subset of synovial fibroblasts implicated in the pathogenesis of rheumatoid arthritis.


The synovium is a mesenchymal tissue composed mainly of fibroblasts, with a lining and sublining that surround the joints. In rheumatoid arthritis the synovial tissue undergoes marked hyperplasia, becomes inflamed and invasive, and destroys the joint(1,2). It has recently been shown that a subset of fibroblasts in the sublining undergoes a major expansion in rheumatoid arthritis that is linked to disease activity(3-5)  however, the molecular mechanism by which these fibroblasts differentiate and expand is unknown. Here we identify a critical role for NOTCH3 signalling in the differentiation of perivascular and sublining fibroblasts that express CD90 (encoded by THY1). Using single-cell RNA sequencing and synovial tissue organoids, we found that NOTCH3 signalling drives both transcriptional and spatial gradients-emanating from vascular endothelial cells outwards-in fibroblasts. In active rheumatoid arthritis, NOTCH3 and Notch target genes are markedly upregulated in synovial fibroblasts. In mice, the genetic deletion of Notch3 or the blockade of NOTCH3 signalling attenuates inflammation and prevents joint damage in inflammatory arthritis. Our results indicate that synovial fibroblasts exhibit a positional identity that is regulated by endothelium-derived Notch signalling, and that this stromal crosstalk pathway underlies inflammation and pathology in inflammatory arthritis.