GSTDTAP

浏览/检索结果: 共15条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Quantum computational advantage using photons 期刊论文
Science, 2020
作者:  Han-Sen Zhong;  Hui Wang;  Yu-Hao Deng;  Ming-Cheng Chen;  Li-Chao Peng;  Yi-Han Luo;  Jian Qin;  Dian Wu;  Xing Ding;  Yi Hu;  Peng Hu;  Xiao-Yan Yang;  Wei-Jun Zhang;  Hao Li;  Yuxuan Li;  Xiao Jiang;  Lin Gan;  Guangwen Yang;  Lixing You;  Zhen Wang;  Li Li;  Nai-Le Liu;  Chao-Yang Lu;  Jian-Wei Pan
收藏  |  浏览/下载:30/0  |  提交时间:2020/12/22
Radiative forcing of the aerosol-cloud interaction in seriously polluted East China and East China Sea 期刊论文
Atmospheric Research, 2020
作者:  Xiao Zhang, Hong Wang, Hui-Zheng Che, Sai-Chun Tan, ... Guang-Yu Shi
收藏  |  浏览/下载:12/0  |  提交时间:2020/12/07
On the distribution of helicity in the tropical cyclone boundary layer from dropsonde composites 期刊论文
Atmospheric Research, 2020
作者:  Nuo Chen, Jie Tang, Jun A. Zhang, Lei-Ming Ma, Hui Yu
收藏  |  浏览/下载:5/0  |  提交时间:2020/10/12
Multiple transpolar auroral arcs reveal insight about coupling processes in the Earth's magnetotail 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (28) : 16193-16198
作者:  Zhang, Qing-He;  Zhang, Yong-Liang;  Wang, Chi;  Lockwood, Michael;  Yang, Hui-Gen;  Tang, Bin-Bin;  Xing, Zan-Yang;  Oksavik, Kjellmar;  Lyons, Larry R.;  Ma, Yu-Zhang;  Zong, Qiu-Gang;  Moen, Joran Idar;  Xia, Li-Dong
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/06
aurora  solar-terrestrial interaction  magnetosphere  polar ionosphere  transpolar auroral arcs  
Strain engineering and epitaxial stabilization of halide perovskites 期刊论文
NATURE, 2020, 577 (7789) : 209-+
作者:  Chen, Yimu;  Lei, Yusheng;  Li, Yuheng;  Yu, Yugang;  Cai, Jinze;  Chiu, Ming-Hui;  Rao, Rahul;  Gu, Yue;  Wang, Chunfeng;  Choi, Woojin;  Hu, Hongjie;  Wang, Chonghe;  Li, Yang;  Song, Jiawei;  Zhang, Jingxin;  Qi, Baiyan;  Lin, Muyang;  Zhang, Zhuorui;  Islam, Ahmad E.;  Maruyama, Benji;  Dayeh, Shadi;  Li, Lain-Jong;  Yang, Kesong;  Lo, Yu-Hwa;  Xu, Sheng
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03

Strain engineering is a powerful tool with which to enhance semiconductor device performance(1,2). Halide perovskites have shown great promise in device applications owing to their remarkable electronic and optoelectronic properties(3-5). Although applying strain to halide perovskites has been frequently attempted, including using hydrostatic pressurization(6-8), electrostriction(9), annealing(10-12), van der Waals force(13), thermal expansion mismatch(14), and heat-induced substrate phase transition(15), the controllable and device-compatible strain engineering of halide perovskites by chemical epitaxy remains a challenge, owing to the absence of suitable lattice-mismatched epitaxial substrates. Here we report the strained epitaxial growth of halide perovskite single-crystal thin films on lattice-mismatched halide perovskite substrates. We investigated strain engineering of a-formamidinium lead iodide (alpha-FAPbI(3)) using both experimental techniques and theoretical calculations. By tailoring the substrate composition-and therefore its lattice parameter-a compressive strain as high as 2.4 per cent is applied to the epitaxial alpha-FAPbI(3) thin film. We demonstrate that this strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of alpha-FAPbI(3). Strained epitaxy is also shown to have a substantial stabilization effect on the alpha-FAPbI(3) phase owing to the synergistic effects of epitaxial stabilization and strain neutralization. As an example, strain engineering is applied to enhance the performance of an alpha-FAPbI(3)-based photodetector.


  
DNA-repair enzyme turns to translation 期刊论文
NATURE, 2020, 579 (7798) : 198-199
作者:  Bian, Zhilei;  Gong, Yandong;  Huang, Tao;  Lee, Christopher Z. W.;  Bian, Lihong;  Bai, Zhijie;  Shi, Hui;  Zeng, Yang;  Liu, Chen;  He, Jian;  Zhou, Jie;  Li, Xianlong;  Li, Zongcheng;  Ni, Yanli;  Ma, Chunyu;  Cui, Lei;  Zhang, Rui;  Chan, Jerry K. Y.;  Ng, Lai Guan;  Lan, Yu;  Ginhoux, Florent;  Liu, Bing
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

A key DNA-repair enzyme has a surprising role during the early steps in the assembly of ribosomes - the molecular machines that translate the genetic code into protein.


  
Sustainable production of value-added carbon nanomaterials from biomass pyrolysis 期刊论文
NATURE SUSTAINABILITY, 2020
作者:  Zhang, Shun;  Jiang, Shun-Feng;  Huang, Bao-Cheng;  Shen, Xian-Cheng;  Chen, Wen-Jing;  Zhou, Tian-Pei;  Cheng, Hui-Yuan;  Cheng, Bin-Hai;  Wu, Chang-Zheng;  Li, Wen-Wei;  Jiang, Hong;  Yu, Han-Qing
收藏  |  浏览/下载:20/0  |  提交时间:2020/05/20
The Great Oxidation Event expanded the genetic repertoire of arsenic metabolism and cycling 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (19) : 10414-10421
作者:  Chen, Song-Can;  Sun, Guo-Xin;  Yan, Yu;  Konstantinidis, Konstantinos T.;  Zhang, Si-Yu;  Deng, Ye;  Li, Xiao-Min;  Cui, Hui-Ling;  Musat, Florin;  Popp, Denny;  Rosen, Barry P.;  Zhu, Yong-Guan
收藏  |  浏览/下载:21/0  |  提交时间:2020/05/13
arsenic  detoxification  evolution  oxygen  biogeochemistry  
Injured adult neurons regress to an embryonic transcriptional growth state 期刊论文
NATURE, 2020, 581 (7806) : 77-+
作者:  Wang, Ruicong;  Li, Hongda;  Wu, Jianfeng;  Cai, Zhi-Yu;  Li, Baizhou;  Ni, Hengxiao;  Qiu, Xingfeng;  Chen, Hui;  Liu, Wei;  Yang, Zhang-Hua;  Liu, Min;  Hu, Jin;  Liang, Yaoji;  Lan, Ping;  Han, Jiahuai;  Mo, Wei
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

Grafts of spinal-cord-derived neural progenitor cells (NPCs) enable the robust regeneration of corticospinal axons and restore forelimb function after spinal cord injury(1)  however, the molecular mechanisms that underlie this regeneration are unknown. Here we perform translational profiling specifically of corticospinal tract (CST) motor neurons in mice, to identify their '  regenerative transcriptome'  after spinal cord injury and NPC grafting. Notably, both injury alone and injury combined with NPC grafts elicit virtually identical early transcriptomic responses in host CST neurons. However, in mice with injury alone this regenerative transcriptome is downregulated after two weeks, whereas in NPC-grafted mice this transcriptome is sustained. The regenerative transcriptome represents a reversion to an embryonic transcriptional state of the CST neuron. The huntingtin gene (Htt) is a central hub in the regeneration transcriptome  deletion of Htt significantly attenuates regeneration, which shows that Htt has a key role in neural plasticity after injury.


In mouse models of central nervous system injury, Htt is shown to be a key component of the regulatory program associated with reversion of the neuronal transcriptome to a less-mature state.


  
Structure and mechanism of human diacylglycerol O-acyltransferase 1 期刊论文
NATURE, 2020, 581 (7808) : 329-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

The structure of human diacylglycerol O-acyltransferase 1, a membrane protein that synthesizes triacylglycerides, is solved with cryo-electron microscopy, providing insight into its function and mechanism of enzymatic activity.


Diacylglycerol O-acyltransferase 1 (DGAT1) synthesizes triacylglycerides and is required for dietary fat absorption and fat storage in humans(1). DGAT1 belongs to the membrane-bound O-acyltransferase (MBOAT) superfamily, members of which are found in all kingdoms of life and are involved in the acylation of lipids and proteins(2,3). How human DGAT1 and other mammalian members of the MBOAT family recognize their substrates and catalyse their reactions is unknown. The absence of three-dimensional structures also hampers rational targeting of DGAT1 for therapeutic purposes. Here we present the cryo-electron microscopy structure of human DGAT1 in complex with an oleoyl-CoA substrate. Each DGAT1 protomer has nine transmembrane helices, eight of which form a conserved structural fold that we name the MBOAT fold. The MBOAT fold in DGAT1 forms a hollow chamber in the membrane that encloses highly conserved catalytic residues. The chamber has separate entrances for each of the two substrates, fatty acyl-CoA and diacylglycerol. DGAT1 can exist as either a homodimer or a homotetramer and the two forms have similar enzymatic activity. The N terminus of DGAT1 interacts with the neighbouring protomer and these interactions are required for enzymatic activity.