GSTDTAP

浏览/检索结果: 共16条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Drag coefficient of emergent flexible vegetation in steady nonuniform flow 期刊论文
Water Resources Research, 2020
作者:  Yonggang Zhang;  Ping Wang;  Jinhua Cheng;  Wei‐;  Jie Wang;  Li Zeng;  Bin Wang
收藏  |  浏览/下载:5/0  |  提交时间:2020/08/18
The response of soil respiration to precipitation change is asymmetric and differs between grasslands and forests 期刊论文
Global Change Biology, 2020
作者:  Yue Du;  Ying‐;  Ping Wang;  Fanglong Su;  Jun Jiang;  Chen Wang;  Mengxiao Yu;  Junhua Yan
收藏  |  浏览/下载:8/0  |  提交时间:2020/08/09
Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover 期刊论文
Global Change Biology, 2020
作者:  Xu Wang;  Chao Wang;  M. Francesca Cotrufo;  Lifei Sun;  Ping Jiang;  Ziping Liu;  Edith Bai
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/06
Metalens-array–based high-dimensional and multiphoton quantum source 期刊论文
Science, 2020
作者:  Lin Li;  Zexuan Liu;  Xifeng Ren;  Shuming Wang;  Vin-Cent Su;  Mu-Ku Chen;  Cheng Hung Chu;  Hsin Yu Kuo;  Biheng Liu;  Wenbo Zang;  Guangcan Guo;  Lijian Zhang;  Zhenlin Wang;  Shining Zhu;  Din Ping Tsai
收藏  |  浏览/下载:14/0  |  提交时间:2020/06/29
Giant thermopower of ionic gelatin near room temperature 期刊论文
Science, 2020
作者:  Cheng-Gong Han;  Xin Qian;  Qikai Li;  Biao Deng;  Yongbin Zhu;  Zhijia Han;  Wenqing Zhang;  Weichao Wang;  Shien-Ping Feng;  Gang Chen;  Weishu Liu
收藏  |  浏览/下载:10/0  |  提交时间:2020/06/09
Impaired cell fate through gain-of-function mutations in a chromatin reader 期刊论文
NATURE, 2020, 577 (7788) : 121-+
作者:  Wan, Liling;  Chong, Shasha;  Xuan, Fan;  Liang, Angela;  Cui, Xiaodong;  Gates, Leah;  Carroll, Thomas S.;  Li, Yuanyuan;  Feng, Lijuan;  Chen, Guochao;  Wang, Shu-Ping;  Ortiz, Michael V.;  Daley, Sara K.;  Wang, Xiaolu;  Xuan, Hongwen;  Kentsis, Alex;  Muir, Tom W.;  Roeder, Robert G.;  Li, Haitao;  Li, Wei;  Tjian, Robert;  Wen, Hong;  Allis, C. David
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Modifications of histone proteins have essential roles in normal development and human disease. Recognition of modified histones by '  reader'  proteins is a key mechanism that mediates the function of histone modifications, but how the dysregulation of these readers might contribute to disease remains poorly understood. We previously identified the ENL protein as a reader of histone acetylation via its YEATS domain, linking it to the expression of cancer-driving genes in acute leukaemia1. Recurrent hotspot mutations have been found in the ENL YEATS domain in Wilms tumour2,3, the most common type of paediatric kidney cancer. Here we show, using human and mouse cells, that these mutations impair cell-fate regulation by conferring gain-of-function in chromatin recruitment and transcriptional control. ENL mutants induce gene-expression changes that favour a premalignant cell fate, and, in an assay for nephrogenesis using murine cells, result in undifferentiated structures resembling those observed in human Wilms tumour. Mechanistically, although bound to largely similar genomic loci as the wild-type protein, ENL mutants exhibit increased occupancy at a subset of targets, leading to a marked increase in the recruitment and activity of transcription elongation machinery that enforces active transcription from target loci. Furthermore, ectopically expressed ENL mutants exhibit greater self-association and form discrete and dynamic nuclear puncta that are characteristic of biomolecular hubs consisting of local high concentrations of regulatory factors. Such mutation-driven ENL self-association is functionally linked to enhanced chromatin occupancy and gene activation. Collectively, our findings show that hotspot mutations in a chromatinreader domain drive self-reinforced recruitment, derailing normal cell-fate control during development and leading to an oncogenic outcome.


  
A neurotransmitter produced by gut bacteria modulates host sensory behaviour 期刊论文
NATURE, 2020
作者:  Zhao, Xiaoxu;  Song, Peng;  Wang, Chengcai;  Riis-Jensen, Anders C.;  Fu, Wei;  Deng, Ya;  Wan, Dongyang;  Kang, Lixing;  Ning, Shoucong;  Dan, Jiadong;  Venkatesan, T.;  Liu, Zheng;  Zhou, Wu;  Thygesen, Kristian S.;  Luo, Xin;  Pennycook, Stephen J.;  Loh, Kian Ping
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

A neuromodulator produced by commensalProvidenciabacteria that colonize the gut ofCaenorhabditis elegansmimics the functions of the cognate host molecule to manipulate a sensory decision of the host.


Animals coexist in commensal, pathogenic or mutualistic relationships with complex communities of diverse organisms, including microorganisms(1). Some bacteria produce bioactive neurotransmitters that have previously been proposed to modulate nervous system activity and behaviours of their hosts(2,3). However, the mechanistic basis of this microbiota-brain signalling and its physiological relevance are largely unknown. Here we show that inCaenorhabditis elegans, the neuromodulator tyramine produced by commensalProvidenciabacteria, which colonize the gut, bypasses the requirement for host tyramine biosynthesis and manipulates a host sensory decision. Bacterially produced tyramine is probably converted to octopamine by the host tyramine beta-hydroxylase enzyme. Octopamine, in turn, targets the OCTR-1 octopamine receptor on ASH nociceptive neurons to modulate an aversive olfactory response. We identify the genes that are required for tyramine biosynthesis inProvidencia, and show that these genes are necessary for the modulation of host behaviour. We further find thatC. eleganscolonized byProvidenciapreferentially select these bacteria in food choice assays, and that this selection bias requires bacterially produced tyramine and host octopamine signalling. Our results demonstrate that a neurotransmitter produced by gut bacteria mimics the functions of the cognate host molecule to override host control of a sensory decision, and thereby promotes fitness of both the host and the microorganism.


  
Injured adult neurons regress to an embryonic transcriptional growth state 期刊论文
NATURE, 2020, 581 (7806) : 77-+
作者:  Wang, Ruicong;  Li, Hongda;  Wu, Jianfeng;  Cai, Zhi-Yu;  Li, Baizhou;  Ni, Hengxiao;  Qiu, Xingfeng;  Chen, Hui;  Liu, Wei;  Yang, Zhang-Hua;  Liu, Min;  Hu, Jin;  Liang, Yaoji;  Lan, Ping;  Han, Jiahuai;  Mo, Wei
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

Grafts of spinal-cord-derived neural progenitor cells (NPCs) enable the robust regeneration of corticospinal axons and restore forelimb function after spinal cord injury(1)  however, the molecular mechanisms that underlie this regeneration are unknown. Here we perform translational profiling specifically of corticospinal tract (CST) motor neurons in mice, to identify their '  regenerative transcriptome'  after spinal cord injury and NPC grafting. Notably, both injury alone and injury combined with NPC grafts elicit virtually identical early transcriptomic responses in host CST neurons. However, in mice with injury alone this regenerative transcriptome is downregulated after two weeks, whereas in NPC-grafted mice this transcriptome is sustained. The regenerative transcriptome represents a reversion to an embryonic transcriptional state of the CST neuron. The huntingtin gene (Htt) is a central hub in the regeneration transcriptome  deletion of Htt significantly attenuates regeneration, which shows that Htt has a key role in neural plasticity after injury.


In mouse models of central nervous system injury, Htt is shown to be a key component of the regulatory program associated with reversion of the neuronal transcriptome to a less-mature state.


  
The gut-brain axis mediates sugar preference 期刊论文
NATURE, 2020, 580 (7804) : 511-+
作者:  Wang, Ruicong;  Li, Hongda;  Wu, Jianfeng;  Cai, Zhi-Yu;  Li, Baizhou;  Ni, Hengxiao;  Qiu, Xingfeng;  Chen, Hui;  Liu, Wei;  Yang, Zhang-Hua;  Liu, Min;  Hu, Jin;  Liang, Yaoji;  Lan, Ping;  Han, Jiahuai;  Mo, Wei
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

The taste of sugar is one of the most basic sensory percepts for humans and other animals. Animals can develop a strong preference for sugar even if they lack sweet taste receptors, indicating a mechanism independent of taste(1-3). Here we examined the neural basis for sugar preference and demonstrate that a population of neurons in the vagal ganglia and brainstem are activated via the gut-brain axis to create preference for sugar. These neurons are stimulated in response to sugar but not artificial sweeteners, and are activated by direct delivery of sugar to the gut. Using functional imaging we monitored activity of the gut-brain axis, and identified the vagal neurons activated by intestinal delivery of glucose. Next, we engineered mice in which synaptic activity in this gut-to-brain circuit was genetically silenced, and prevented the development of behavioural preference for sugar. Moreover, we show that co-opting this circuit by chemogenetic activation can create preferences to otherwise less-preferred stimuli. Together, these findings reveal a gut-to-brain post-ingestive sugar-sensing pathway critical for the development of sugar preference. In addition, they explain the neural basis for differences in the behavioural effects of sweeteners versus sugar, and uncover an essential circuit underlying the highly appetitive effects of sugar.


Experiments in mice show that a population of neurons in the vagal ganglia respond to the presence of glucose in the gut and connect to neurons in the brainstem, revealing the circuit that underlies the neural basis for the behavioural preference for sugar.


  
Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand? 期刊论文
Global Change Biology, 2020
作者:  Athanasios Paschalis;  Simone Fatichi;  Jakob Zscheischler;  Philippe Ciais;  Michael Bahn;  Lena Boysen;  Jinfeng Chang;  Martin De Kauwe;  Marc Estiarte;  Daniel Goll;  Paul J. Hanson;  Anna B. Harper;  Enqing Hou;  Jaime Kigel;  Alan K. Knapp;  Klaus S. Larsen;  Wei Li;  Sebastian Lienert;  Yiqi Luo;  Patrick Meir;  Julia E. M. S. Nabel;  Romà;  Ogaya;  Anthony J. Parolari;  Changhui Peng;  Josep Peñ;  uelas;  Julia Pongratz;  Serge Rambal;  Inger K. Schmidt;  Hao Shi;  Marcelo Sternberg;  Hanqin Tian;  Elisabeth Tschumi;  Anna Ukkola;  Sara Vicca;  Nicolas Viovy;  Ying‐;  Ping Wang;  Zhuonan Wang;  Karina Williams;  Donghai Wu;  Qiuan Zhu
收藏  |  浏览/下载:9/0  |  提交时间:2020/05/13