GSTDTAP

浏览/检索结果: 共19条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Transparent ferroelectric crystals with ultrahigh piezoelectricity 期刊论文
NATURE, 2020, 577 (7790) : 350-+
作者:  Qiu, Chaorui;  Wang, Bo;  Zhang, Nan;  Zhang, Shujun;  Liu, Jinfeng;  Walker, David;  Wang, Yu;  Tian, Hao;  Shrout, Thomas R.;  Xu, Zhuo;  Chen, Long-Qing;  Li, Fei
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Transparent piezoelectrics are highly desirable for numerous hybrid ultrasound-optical devices ranging from photoacoustic imaging transducers to transparent actuators for haptic applications(1-7). However, it is challenging to achieve high piezoelectricity and perfect transparency simultaneously because most high-performance piezoelectrics are ferroelectrics that contain high-density light-scattering domain walls. Here, through a combination of phase-field simulations and experiments, we demonstrate a relatively simple method of using an alternating-current electric field to engineer the domain structures of originally opaque rhombohedral Pb(Mg1/3Nb2/3)O-3-PbTiO3 (PMN-PT) crystals to simultaneously generate near-perfect transparency, an ultrahigh piezoelectric coefficient d(33) (greater than 2,100 picocoulombs per newton), an excellent electromechanical coupling factor k(33) (about 94 per cent) and a large electro-optical coefficient gamma(33) (approximately 220 picometres per volt), which is far beyond the performance of the commonly used transparent ferroelectric crystal LiNbO3. We find that increasing the domain size leads to a higher d(33) value for the [001]-oriented rhombohedral PMN-PT crystals, challenging the conventional wisdom that decreasing the domain size always results in higher piezoelectricity(8-10). This work presents a paradigm for achieving high transparency and piezoelectricity by ferroelectric domain engineering, and we expect the transparent ferroelectric crystals reported here to provide a route to a wide range of hybrid device applications, such as medical imaging, self-energy-harvesting touch screens and invisible robotic devices.


  
Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease 期刊论文
NATURE, 2020, 577 (7788) : 103-+
作者:  Lalaoui, Najoua;  Boyden, Steven E.;  Oda, Hirotsugu;  Wood, Geryl M.;  Stone, Deborah L.;  Chau, Diep;  Liu, Lin;  Stoffels, Monique;  Kratina, Tobias;  Lawlor, Kate E.;  Zaal, Kristien J. M.;  Hoffmann, Patrycja M.;  Etemadi, Nima;  Shield-Artin, Kristy;  Biben, Christine;  Tsai, Wanxia Li;  Blake, Mary D.;  Kuehn, Hye Sun;  Yang, Dan;  Anderton, Holly;  Silke, Natasha;  Wachsmuth, Laurens;  Zheng, Lixin;  Moura, Natalia Sampaio;  Beck, David B.;  Gutierrez-Cruz, Gustavo;  Ombrello, Amanda K.;  Pinto-Patarroyo, Gineth P.;  Kueh, Andrew J.;  Herold, Marco J.;  Hall, Cathrine;  Wang, Hongying;  Chae, Jae Jin;  Dmitrieva, Natalia I.;  McKenzie, Mark;  Light, Amanda;  Barham, Beverly K.;  Jones, Anne;  Romeo, Tina M.;  Zhou, Qing;  Aksentijevich, Ivona;  Mullikin, James C.;  Gross, Andrew J.;  Shum, Anthony K.;  Hawkins, Edwin D.;  Masters, Seth L.;  Lenardo, Michael J.;  Boehm, Manfred;  Rosenzweig, Sergio D.;  Pasparakis, Manolis;  Voss, Anne K.;  Gadina, Massimo;  Kastner, Daniel L.;  Silke, John
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

RIPK1 is a key regulator of innate immune signalling pathways. To ensure an optimal inflammatory response, RIPK1 is regulated post-translationally by well-characterized ubiquitylation and phosphorylation events, as well as by caspase-8-mediated cleavage1-7. The physiological relevance of this cleavage event remains unclear, although it is thought to inhibit activation of RIPK3 and necroptosis8. Here we show that the heterozygous missense mutations D324N, D324H and D324Y prevent caspase cleavage of RIPK1 in humans and result in an early-onset periodic fever syndrome and severe intermittent lymphadenopathy-a condition we term '  cleavage-resistant RIPK1-induced autoinflammatory syndrome'  . To define the mechanism for this disease, we generated a cleavage-resistant Ripk1(D325A) mutant mouse strain. Whereas Ripk1(-/-) mice died postnatally from systemic inflammation, Ripk1(D325A/D325A) mice died during embryogenesis. Embryonic lethality was completely prevented by the combined loss of Casp8 and Ripk3, but not by loss of Ripk3 or Mlkl alone. Loss of RIPK1 kinase activity also prevented Ripk1(D325A/D325A) embryonic lethality, although the mice died before weaning from multi-organ inflammation in a RIPK3-dependent manner. Consistently, Ripk1(D325A/D325A) and Ripk1(D325A/+) cells were hypersensitive to RIPK3-dependent TNF-induced apoptosis and necroptosis. Heterozygous Ripk1(D325A/+) mice were viable and grossly normal, but were hyper-responsive to inflammatory stimuli in vivo. Our results demonstrate the importance of caspase-mediated RIPK1 cleavage during embryonic development and show that caspase cleavage of RIPK1 not only inhibits necroptosis but also maintains inflammatory homeostasis throughout life.


  
Impaired cell fate through gain-of-function mutations in a chromatin reader 期刊论文
NATURE, 2020, 577 (7788) : 121-+
作者:  Wan, Liling;  Chong, Shasha;  Xuan, Fan;  Liang, Angela;  Cui, Xiaodong;  Gates, Leah;  Carroll, Thomas S.;  Li, Yuanyuan;  Feng, Lijuan;  Chen, Guochao;  Wang, Shu-Ping;  Ortiz, Michael V.;  Daley, Sara K.;  Wang, Xiaolu;  Xuan, Hongwen;  Kentsis, Alex;  Muir, Tom W.;  Roeder, Robert G.;  Li, Haitao;  Li, Wei;  Tjian, Robert;  Wen, Hong;  Allis, C. David
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Modifications of histone proteins have essential roles in normal development and human disease. Recognition of modified histones by '  reader'  proteins is a key mechanism that mediates the function of histone modifications, but how the dysregulation of these readers might contribute to disease remains poorly understood. We previously identified the ENL protein as a reader of histone acetylation via its YEATS domain, linking it to the expression of cancer-driving genes in acute leukaemia1. Recurrent hotspot mutations have been found in the ENL YEATS domain in Wilms tumour2,3, the most common type of paediatric kidney cancer. Here we show, using human and mouse cells, that these mutations impair cell-fate regulation by conferring gain-of-function in chromatin recruitment and transcriptional control. ENL mutants induce gene-expression changes that favour a premalignant cell fate, and, in an assay for nephrogenesis using murine cells, result in undifferentiated structures resembling those observed in human Wilms tumour. Mechanistically, although bound to largely similar genomic loci as the wild-type protein, ENL mutants exhibit increased occupancy at a subset of targets, leading to a marked increase in the recruitment and activity of transcription elongation machinery that enforces active transcription from target loci. Furthermore, ectopically expressed ENL mutants exhibit greater self-association and form discrete and dynamic nuclear puncta that are characteristic of biomolecular hubs consisting of local high concentrations of regulatory factors. Such mutation-driven ENL self-association is functionally linked to enhanced chromatin occupancy and gene activation. Collectively, our findings show that hotspot mutations in a chromatinreader domain drive self-reinforced recruitment, derailing normal cell-fate control during development and leading to an oncogenic outcome.


  
Layered nanocomposites by shear-flow-induced alignment of nanosheets (vol 580, pg 210, 2020) 期刊论文
NATURE, 2020, 582 (7811) : E4-E4
作者:  Chen, Guorui;  Sharpe, Aaron L.;  Fox, Eli J.;  Zhang, Ya-Hui;  Wang, Shaoxin;  Jiang, Lili;  Lyu, Bosai;  Li, Hongyuan;  Watanabe, Kenji;  Taniguchi, Takashi;  Shi, Zhiwen;  Senthil, T.;  Goldhaber-Gordon, David;  Zhang, Yuanbo;  Wang, Feng
收藏  |  浏览/下载:30/0  |  提交时间:2020/07/03
The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K 期刊论文
NATURE, 2020
作者:  Chen, Guorui;  Sharpe, Aaron L.;  Fox, Eli J.;  Zhang, Ya-Hui;  Wang, Shaoxin;  Jiang, Lili;  Lyu, Bosai;  Li, Hongyuan;  Watanabe, Kenji;  Taniguchi, Takashi;  Shi, Zhiwen;  Senthil, T.;  Goldhaber-Gordon, David;  Zhang, Yuanbo;  Wang, Feng
收藏  |  浏览/下载:44/0  |  提交时间:2020/07/03

The cyclin-dependent kinase inhibitor CR8 acts as a molecular glue compound by inducing the formation of a complex between CDK12-cyclin K and DDB1, which results in the ubiquitination and degradation of cyclin K.


Molecular glue compounds induce protein-protein interactions that, in the context of a ubiquitin ligase, lead to protein degradation(1). Unlike traditional enzyme inhibitors, these molecular glue degraders act substoichiometrically to catalyse the rapid depletion of previously inaccessible targets(2). They are clinically effective and highly sought-after, but have thus far only been discovered serendipitously. Here, through systematically mining databases for correlations between the cytotoxicity of 4,518 clinical and preclinical small molecules and the expression levels of E3 ligase components across hundreds of human cancer cell lines(3-5), we identify CR8-a cyclin-dependent kinase (CDK) inhibitor(6)-as a compound that acts as a molecular glue degrader. The CDK-bound form of CR8 has a solvent-exposed pyridyl moiety that induces the formation of a complex between CDK12-cyclin K and the CUL4 adaptor protein DDB1, bypassing the requirement for a substrate receptor and presenting cyclin K for ubiquitination and degradation. Our studies demonstrate that chemical alteration of surface-exposed moieties can confer gain-of-function glue properties to an inhibitor, and we propose this as a broader strategy through which target-binding molecules could be converted into molecular glues.


  
The projected timing of abrupt ecological disruption from climate change 期刊论文
NATURE, 2020, 580 (7804) : 496-+
作者:  Gorgulla, Christoph;  Boeszoermenyi, Andras;  Wang, Zi-Fu;  Fischer, Patrick D.;  Coote, Paul W.;  Padmanabha Das, Krishna M.;  Malets, Yehor S.;  Radchenko, Dmytro S.;  Moroz, Yurii S.;  Scott, David A.;  Fackeldey, Konstantin;  Hoffmann, Moritz;  Iavniuk, Iryna;  Wagner, Gerhard;  Arthanari, Haribabu
收藏  |  浏览/下载:55/0  |  提交时间:2020/05/13

As anthropogenic climate change continues the risks to biodiversity will increase over time, with future projections indicating that a potentially catastrophic loss of global biodiversity is on the horizon(1-3). However, our understanding of when and how abruptly this climate-driven disruption of biodiversity will occur is limited because biodiversity forecasts typically focus on individual snapshots of the future. Here we use annual projections (from 1850 to 2100) of temperature and precipitation across the ranges of more than 30,000 marine and terrestrial species to estimate the timing of their exposure to potentially dangerous climate conditions. We project that future disruption of ecological assemblages as a result of climate change will be abrupt, because within any given ecological assemblage the exposure of most species to climate conditions beyond their realized niche limits occurs almost simultaneously. Under a high-emissions scenario (representative concentration pathway (RCP) 8.5), such abrupt exposure events begin before 2030 in tropical oceans and spread to tropical forests and higher latitudes by 2050. If global warming is kept below 2 degrees C, less than 2% of assemblages globally are projected to undergo abrupt exposure events of more than 20% of their constituent species  however, the risk accelerates with the magnitude of warming, threatening 15% of assemblages at 4 degrees C, with similar levels of risk in protected and unprotected areas. These results highlight the impending risk of sudden and severe biodiversity losses from climate change and provide a framework for predicting both when and where these events may occur.


Using annual projections of temperature and precipitation to estimate when species will be exposed to potentially harmful climate conditions reveals that disruption of ecological assemblages as a result of climate change will be abrupt and could start as early as the current decade.


  
Highly porous nature of a primitive asteroid revealed by thermal imaging 期刊论文
NATURE, 2020, 579 (7800) : 518-522
作者:  Quinn, Robert A.;  Melnik, Alexey, V;  Vrbanac, Alison;  Fu, Ting;  Patras, Kathryn A.;  Christy, Mitchell P.;  Bodai, Zsolt;  Belda-Ferre, Pedro;  Tripathi, Anupriya;  Chung, Lawton K.;  Downes, Michael;  Welch, Ryan D.;  Quinn, Melissa;  Humphrey, Greg;  Panitchpakdi, Morgan;  Weldon, Kelly C.;  Aksenov, Alexander;  da Silva, Ricardo;  Avila-Pacheco, Julian;  Clish, Clary;  Bae, Sena;  Mallick, Himel;  Franzosa, Eric A.;  Lloyd-Price, Jason;  Bussell, Robert;  Thron, Taren;  Nelson, Andrew T.;  Wang, Mingxun;  Leszczynski, Eric;  Vargas, Fernando;  Gauglitz, Julia M.;  Meehan, Michael J.;  Gentry, Emily;  Arthur, Timothy D.;  Komor, Alexis C.;  Poulsen, Orit;  Boland, Brigid S.;  Chang, John T.;  Sandborn, William J.;  Lim, Meerana;  Garg, Neha;  Lumeng, Julie C.;  Xavier, Ramnik J.;  Kazmierczak, Barbara, I;  Jain, Ruchi;  Egan, Marie;  Rhee, Kyung E.;  Ferguson, David;  Raffatellu, Manuela;  Vlamakis, Hera;  Haddad, Gabriel G.;  Siegel, Dionicio;  Huttenhower, Curtis;  Mazmanian, Sarkis K.;  Evans, Ronald M.;  Nizet, Victor;  Knight, Rob;  Dorrestein, Pieter C.
收藏  |  浏览/下载:48/0  |  提交时间:2020/05/13

Carbonaceous (C-type) asteroids(1) are relics of the early Solar System that have preserved primitive materials since their formation approximately 4.6 billion years ago. They are probably analogues of carbonaceous chondrites(2,3) and are essential for understanding planetary formation processes. However, their physical properties remain poorly known because carbonaceous chondrite meteoroids tend not to survive entry to Earth'  s atmosphere. Here we report on global one-rotation thermographic images of the C-type asteroid 162173 Ryugu, taken by the thermal infrared imager (TIR)(4) onboard the spacecraft Hayabusa2(5), indicating that the asteroid'  s boulders and their surroundings have similar temperatures, with a derived thermal inertia of about 300 J m(-2) s(-0.5) K-1 (300 tiu). Contrary to predictions that the surface consists of regolith and dense boulders, this low thermal inertia suggests that the boulders are more porous than typical carbonaceous chondrites(6) and that their surroundings are covered with porous fragments more than 10 centimetres in diameter. Close-up thermal images confirm the presence of such porous fragments and the flat diurnal temperature profiles suggest a strong surface roughness effect(7,8). We also observed in the close-up thermal images boulders that are colder during the day, with thermal inertia exceeding 600 tiu, corresponding to dense boulders similar to typical carbonaceous chondrites(6). These results constrain the formation history of Ryugu: the asteroid must be a rubble pile formed from impact fragments of a parent body with microporosity(9) of approximately 30 to 50 per cent that experienced a low degree of consolidation. The dense boulders might have originated from the consolidated innermost region or they may have an exogenic origin. This high-porosity asteroid may link cosmic fluffy dust to dense celestial bodies(10).


Thermal imaging data obtained from the spacecraft Hayabusa2 reveal that the carbonaceous asteroid 162173 Ryugu is an object of unusually high porosity.


  
Experimental demonstration of memory-enhanced quantum communication 期刊论文
NATURE, 2020
作者:  Quinn, Robert A.;  Melnik, Alexey, V;  Vrbanac, Alison;  Fu, Ting;  Patras, Kathryn A.;  Christy, Mitchell P.;  Bodai, Zsolt;  Belda-Ferre, Pedro;  Tripathi, Anupriya;  Chung, Lawton K.;  Downes, Michael;  Welch, Ryan D.;  Quinn, Melissa;  Humphrey, Greg;  Panitchpakdi, Morgan;  Weldon, Kelly C.;  Aksenov, Alexander;  da Silva, Ricardo;  Avila-Pacheco, Julian;  Clish, Clary;  Bae, Sena;  Mallick, Himel;  Franzosa, Eric A.;  Lloyd-Price, Jason;  Bussell, Robert;  Thron, Taren;  Nelson, Andrew T.;  Wang, Mingxun;  Leszczynski, Eric;  Vargas, Fernando;  Gauglitz, Julia M.;  Meehan, Michael J.;  Gentry, Emily;  Arthur, Timothy D.;  Komor, Alexis C.;  Poulsen, Orit;  Boland, Brigid S.;  Chang, John T.;  Sandborn, William J.;  Lim, Meerana;  Garg, Neha;  Lumeng, Julie C.;  Xavier, Ramnik J.;  Kazmierczak, Barbara, I;  Jain, Ruchi;  Egan, Marie;  Rhee, Kyung E.;  Ferguson, David;  Raffatellu, Manuela;  Vlamakis, Hera;  Haddad, Gabriel G.;  Siegel, Dionicio;  Huttenhower, Curtis;  Mazmanian, Sarkis K.;  Evans, Ronald M.;  Nizet, Victor;  Knight, Rob;  Dorrestein, Pieter C.
收藏  |  浏览/下载:36/0  |  提交时间:2020/07/03

The ability to communicate quantum information over long distances is of central importance in quantum science and engineering(1). Although some applications of quantum communication such as secure quantum key distribution(2,3) are already being successfully deployed(4-7), their range is currently limited by photon losses and cannot be extended using straightforward measure-and-repeat strategies without compromising unconditional security(8). Alternatively, quantum repeaters(9), which utilize intermediate quantum memory nodes and error correction techniques, can extend the range of quantum channels. However, their implementation remains an outstanding challenge(10-16), requiring a combination of efficient and high-fidelity quantum memories, gate operations, and measurements. Here we use a single solid-state spin memory integrated in a nanophotonic diamond resonator(17-19) to implement asynchronous photonic Bell-state measurements, which are a key component of quantum repeaters. In a proof-of-principle experiment, we demonstrate high-fidelity operation that effectively enables quantum communication at a rate that surpasses the ideal loss-equivalent direct-transmission method while operating at megahertz clock speeds. These results represent a crucial step towards practical quantum repeaters and large-scale quantum networks(20,21).


A solid-state spin memory is used to demonstrate quantum repeater functionality, which has the potential to overcome photon losses involved in long-distance transmission of quantum information.


  
Current-driven magnetic domain-wall logic 期刊论文
NATURE, 2020, 579 (7798) : 214-+
作者:  Culp, Elizabeth J.;  Waglechner, Nicholas;  Wang, Wenliang;  Fiebig-Comyn, Aline A.;  Hsu, Yen-Pang;  Koteva, Kalinka;  Sychantha, David;  Coombes, Brian K.;  Van Nieuwenhze, Michael S.;  Brun, Yves, V;  Wright, Gerard D.
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Spin-based logic architectures provide nonvolatile data retention, near-zero leakage, and scalability, extending the technology roadmap beyond complementary metal-oxide-semiconductor logic(1-13). Architectures based on magnetic domain walls take advantage of the fast motion, high density, non-volatility and flexible design of domain walls to process and store information(1,3,14-16). Such schemes, however, rely on domain-wall manipulation and clocking using an external magnetic field, which limits their implementation in dense, large-scale chips. Here we demonstrate a method for performing all-electric logic operations and cascading using domain-wall racetracks. We exploit the chiral coupling between neighbouring magnetic domains induced by the interfacial Dzyaloshinskii-Moriya interaction(17-20), which promotes non-collinear spin alignment, to realize a domain-wall inverter, the essential basic building block in all implementations of Boolean logic. We then fabricate reconfigurable NAND and NOR logic gates, and perform operations with current-induced domain-wall motion. Finally, we cascade several NAND gates to build XOR and full adder gates, demonstrating electrical control of magnetic data and device interconnection in logic circuits. Our work provides a viable platform for scalable all-electric magnetic logic, paving the way for memory-in-logic applications.


  
Bile acid metabolites control T(H)17 and T-reg cell differentiation (vol 576, pg 148, 2019) 期刊论文
NATURE, 2020, 579 (7798) : E7-E7
作者:  Su, Jie;  Morgani, Sophie M.;  David, Charles J.;  Wang, Qiong;  Er, Ekrem Emrah;  Huang, Yun-Han;  Basnet, Harihar;  Zou, Yilong;  Shu, Weiping;  Soni, Rajesh K.;  Hendrickson, Ronald C.;  Hadjantonakis, Anna-Katerina;  Massague, Joan
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03