GSTDTAP

浏览/检索结果: 共156条,第1-10条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
Path Properties of Atmospheric Transitions: Illustration with a Low-Order Sudden Stratospheric Warming Model 期刊论文
Journal of the Atmospheric Sciences, 2020
作者:  Finkel, Justin;  Abbot, Dorian S.;  Weare, Jonathan
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/09
Perspective: The future of liquid biopsy 期刊论文
NATURE, 2020, 579 (7800) : S9-S9
作者:  Silver, Andrew
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

The approach is starting to transform cancer diagnosis. Now the challenge is to make it a standard clinical tool, says Catherine Alix-Panabieres.


  
Everyone, everywhere: the global challenge of climate change Two manifestos call for climate action on different scales - national and global 期刊论文
NATURE, 2020, 579 (7800) : 488-489
作者:  Mallapaty, Smriti
收藏  |  浏览/下载:2/0  |  提交时间:2020/07/03
Strain engineering and epitaxial stabilization of halide perovskites 期刊论文
NATURE, 2020, 577 (7789) : 209-+
作者:  Chen, Yimu;  Lei, Yusheng;  Li, Yuheng;  Yu, Yugang;  Cai, Jinze;  Chiu, Ming-Hui;  Rao, Rahul;  Gu, Yue;  Wang, Chunfeng;  Choi, Woojin;  Hu, Hongjie;  Wang, Chonghe;  Li, Yang;  Song, Jiawei;  Zhang, Jingxin;  Qi, Baiyan;  Lin, Muyang;  Zhang, Zhuorui;  Islam, Ahmad E.;  Maruyama, Benji;  Dayeh, Shadi;  Li, Lain-Jong;  Yang, Kesong;  Lo, Yu-Hwa;  Xu, Sheng
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03

Strain engineering is a powerful tool with which to enhance semiconductor device performance(1,2). Halide perovskites have shown great promise in device applications owing to their remarkable electronic and optoelectronic properties(3-5). Although applying strain to halide perovskites has been frequently attempted, including using hydrostatic pressurization(6-8), electrostriction(9), annealing(10-12), van der Waals force(13), thermal expansion mismatch(14), and heat-induced substrate phase transition(15), the controllable and device-compatible strain engineering of halide perovskites by chemical epitaxy remains a challenge, owing to the absence of suitable lattice-mismatched epitaxial substrates. Here we report the strained epitaxial growth of halide perovskite single-crystal thin films on lattice-mismatched halide perovskite substrates. We investigated strain engineering of a-formamidinium lead iodide (alpha-FAPbI(3)) using both experimental techniques and theoretical calculations. By tailoring the substrate composition-and therefore its lattice parameter-a compressive strain as high as 2.4 per cent is applied to the epitaxial alpha-FAPbI(3) thin film. We demonstrate that this strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of alpha-FAPbI(3). Strained epitaxy is also shown to have a substantial stabilization effect on the alpha-FAPbI(3) phase owing to the synergistic effects of epitaxial stabilization and strain neutralization. As an example, strain engineering is applied to enhance the performance of an alpha-FAPbI(3)-based photodetector.


  
Detected climatic change in global distribution of tropical cyclones 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (20) : 10706-10714
作者:  Murakami, Hiroyuki;  Delworth, Thomas L.;  Cooke, William F.;  Zhao, Ming;  Xiang, Baoqiang;  Hsu, Pang-Chi
收藏  |  浏览/下载:6/0  |  提交时间:2020/05/13
tropical cyclones  detection and attribution  large-ensemble simulations  climate change  spatial pattern  
Molecular tuning of CO2-to-ethylene conversion 期刊论文
NATURE, 2020, 577 (7791) : 509-+
作者:  Li, Fengwang;  39;Brien, Colin P.
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

The electrocatalytic reduction of carbon dioxide, powered by renewable electricity, to produce valuable fuels and feedstocks provides a sustainable and carbon-neutral approach to the storage of energy produced by intermittent renewable sources(1). However, the highly selective generation of economically desirable products such as ethylene from the carbon dioxide reduction reaction (CO2RR) remains a challenge(2). Tuning the stabilities of intermediates to favour a desired reaction pathway can improve selectivity(3-5), and this has recently been explored for the reaction on copper by controlling morphology(6), grain boundaries(7), facets(8), oxidation state(9) and dopants(10). Unfortunately, the Faradaic efficiency for ethylene is still low in neutral media (60 per cent at a partial current density of 7 milliamperes per square centimetre in the best catalyst reported so far(9)), resulting in a low energy efficiency. Here we present a molecular tuning strategy-the functionalization of the surface of electrocatalysts with organic molecules-that stabilizes intermediates for more selective CO2RR to ethylene. Using electrochemical, operando/in situ spectroscopic and computational studies, we investigate the influence of a library of molecules, derived by electro-dimerization of arylpyridiniums(11), adsorbed on copper. We find that the adhered molecules improve the stabilization of an '  atop-bound'  CO intermediate (that is, an intermediate bound to a single copper atom), thereby favouring further reduction to ethylene. As a result of this strategy, we report the CO2RR to ethylene with a Faradaic efficiency of 72 per cent at a partial current density of 230 milliamperes per square centimetre in a liquid-electrolyte flow cell in a neutral medium. We report stable ethylene electrosynthesis for 190 hours in a system based on a membrane-electrode assembly that provides a full-cell energy efficiency of 20 per cent. We anticipate that this may be generalized to enable molecular strategies to complement heterogeneous catalysts by stabilizing intermediates through local molecular tuning.


Electrocatalytic reduction of CO2 over copper can be made highly selective by '  tuning'  the copper surface with adsorbed organic molecules to stabilize intermediates for carbon-based fuels such as ethylene


  
Field-resolved infrared spectroscopy of biological systems 期刊论文
NATURE, 2020, 577 (7788) : 52-+
作者:  Pupeza, Ioachim;  Huber, Marinus;  Trubetskov, Michael;  Schweinberger, Wolfgang;  Hussain, Syed A.;  Hofer, Christina;  Fritsch, Kilian;  Poetzlberger, Markus;  Vamos, Lenard;  Fill, Ernst;  Amotchkina, Tatiana;  Kepesidis, Kosmas V.;  Apolonski, Alexander;  Karpowicz, Nicholas;  Pervak, Vladimir;  Pronin, Oleg;  Fleischmann, Frank;  Azzeer, Abdallah;  Zigman, Mihaela;  Krausz, Ferenc
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

The proper functioning of living systems and physiological phenotypes depends on molecular composition. Yet simultaneous quantitative detection of a wide variety of molecules remains a challenge(1-8). Here we show how broadband optical coherence opens up opportunities for fingerprinting complex molecular ensembles in their natural environment. Vibrationally excited molecules emit a coherent electric field following few-cycle infrared laser excitation(9-12), and this field is specific to the sample'  s molecular composition. Employing electro-optic sampling(10,12-15), we directly measure this global molecular fingerprint down to field strengths 10(7) times weaker than that of the excitation. This enables transillumination of intact living systems with thicknesses of the order of 0.1 millimetres, permitting broadband infrared spectroscopic probing of human cells and plant leaves. In a proof-of-concept analysis of human blood serum, temporal isolation of the infrared electric-field fingerprint from its excitation along with its sampling with attosecond timing precision results in detection sensitivity of submicrograms per millilitre of blood serum and a detectable dynamic range of molecular concentration exceeding 10(5). This technique promises improved molecular sensitivity and molecular coverage for probing complex, real-world biological and medical settings.


  
Confinement of atomically defined metal halide sheets in a metal-organic framework 期刊论文
NATURE, 2020, 577 (7788) : 64-+
作者:  Gonzalez, Miguel I.;  Turkiewicz, Ari B.;  Darago, Lucy E.;  Oktawiec, Julia;  Bustillo, Karen;  Grandjean, Fernande;  Long, Gary J.;  Long, Jeffrey R.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

The size-dependent and shape-dependent characteristics that distinguish nanoscale materials from bulk solids arise from constraining the dimensionality of an inorganic structure(1-3). As a consequence, many studies have focused on rationally shaping these materials to influence and enhance their optical, electronic, magnetic and catalytic properties(4-6). Although a select number of stable clusters can typically be synthesized within the nanoscale regime for a specific composition, isolating clusters of a predetermined size and shape remains a challenge, especially for those derived from two-dimensional materials. Here we realize a multidentate coordination environment in a metal-organic framework to stabilize discrete inorganic clusters within a porous crystalline support. We show confined growth of atomically defined nickel(ii) bromide, nickel(ii) chloride, cobalt(ii) chloride and iron(ii) chloride sheets through the peripheral coordination of six chelating bipyridine linkers. Notably, confinement within the framework defines the structure and composition of these sheets and facilitates their precise characterization by crystallography. Each metal(ii) halide sheet represents a fragment excised from a single layer of the bulk solid structure, and structures obtained at different precursor loadings enable observation of successive stages of sheet assembly. Finally, the isolated sheets exhibit magnetic behaviours distinct from those of the bulk metal halides, including the isolation of ferromagnetically coupled large-spin ground states through the elimination of long-range, interlayer magnetic ordering. Overall, these results demonstrate that the pore environment of a metal-organic framework can be designed to afford precise control over the size, structure and spatial arrangement of inorganic clusters.


  
Mouse models of neutropenia reveal progenitor-stage-specific defects 期刊论文
NATURE, 2020
作者:  Lombardo, Umberto;  Iriarte, Jose;  Hilbert, Lautaro;  Ruiz-Perez, Javier;  Capriles, Jose M.;  Veit, Heinz
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Advances in genetics and sequencing have identified a plethora of disease-associated and disease-causing genetic alterations. To determine causality between genetics and disease, accurate models for molecular dissection are required  however, the rapid expansion of transcriptional populations identified through single-cell analyses presents a major challenge for accurate comparisons between mutant and wild-type cells. Here we generate mouse models of human severe congenital neutropenia (SCN) using patient-derived mutations in the GFI1 transcription factor. To determine the effects of SCN mutations, we generated single-cell references for granulopoietic genomic states with linked epitopes(1), aligned mutant cells to their wild-type equivalents and identified differentially expressed genes and epigenetic loci. We find that GFI1-target genes are altered sequentially, as cells go through successive states of differentiation. These insights facilitated the genetic rescue of granulocytic specification but not post-commitment defects in innate immune effector function, and underscore the importance of evaluating the effects of mutations and therapy within each relevant cell state.


Mouse models of severe congenital neutropenia using patient-derived mutations in the GFI1 locus are used to determine the mechanisms by which the disease progresses.


  
Monumental architecture at Aguada Fenix and the rise of Maya civilization 期刊论文
NATURE, 2020
作者:  Bedding, Timothy R.;  Murphy, Simon J.;  Hey, Daniel R.;  Huber, Daniel;  Li, Tanda;  Smalley, Barry;  Stello, Dennis;  White, Timothy R.;  Ball, Warrick H.;  Chaplin, William J.;  Colman, Isabel L.;  Fuller, Jim;  Gaidos, Eric;  Harbeck, Daniel R.;  Hermes, J. J.;  Holdsworth, Daniel L.;  Li, Gang;  Li, Yaguang;  Mann, Andrew W.;  Reese, Daniel R.;  Sekaran, Sanjay;  Yu, Jie;  Antoci, Victoria;  Bergmann, Christoph;  Brown, Timothy M.;  Howard, Andrew W.;  Ireland, Michael J.;  Isaacson, Howard;  Jenkins, Jon M.;  Kjeldsen, Hans;  McCully, Curtis;  Rabus, Markus;  Rains, Adam D.;  Ricker, George R.;  Tinney, Christopher G.;  Vanderspek, Roland K.
收藏  |  浏览/下载:30/0  |  提交时间:2020/07/03

Archaeologists have traditionally thought that the development of Maya civilization was gradual, assuming that small villages began to emerge during the Middle Preclassic period (1000-350 bc  dates are calibrated throughout) along with the use of ceramics and the adoption of sedentism(1). Recent finds of early ceremonial complexes are beginning to challenge this model. Here we describe an airborne lidar survey and excavations of the previously unknown site of Aguada Fenix (Tabasco, Mexico) with an artificial plateau, which measures 1,400 m in length and 10 to 15 m in height and has 9 causeways radiating out from it. We dated this construction to between 1000 and 800 bc using a Bayesian analysis of radiocarbon dates. To our knowledge, this is the oldest monumental construction ever found in the Maya area and the largest in the entire pre-Hispanic history of the region. Although the site exhibits some similarities to the earlier Olmec centre of San Lorenzo, the community of Aguada Fenix probably did not have marked social inequality comparable to that of San Lorenzo. Aguada Fenix and other ceremonial complexes of the same period suggest the importance of communal work in the initial development of Maya civilization.


Lidar survey of the Maya lowlands uncovers the monumental site of Aguada Fenix, which dates to around 1000-800 bc and points to the role of communal construction in the development of Maya civilization.