GSTDTAP

浏览/检索结果: 共46条,第1-10条 帮助

限定条件            
已选(0)清除 条数/页:   排序方式:
Multiple transpolar auroral arcs reveal insight about coupling processes in the Earth's magnetotail 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (28) : 16193-16198
作者:  Zhang, Qing-He;  Zhang, Yong-Liang;  Wang, Chi;  Lockwood, Michael;  Yang, Hui-Gen;  Tang, Bin-Bin;  Xing, Zan-Yang;  Oksavik, Kjellmar;  Lyons, Larry R.;  Ma, Yu-Zhang;  Zong, Qiu-Gang;  Moen, Joran Idar;  Xia, Li-Dong
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/06
aurora  solar-terrestrial interaction  magnetosphere  polar ionosphere  transpolar auroral arcs  
Rapid cost decrease of renewables and storage accelerates the decarbonization of China's power system 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  He, Gang;  Lin, Jiang;  Sifuentes, Froylan;  Liu, Xu;  Abhyankar, Nikit;  Phadke, Amol
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/20
Accelerated discovery of CO2 electrocatalysts using active machine learning 期刊论文
NATURE, 2020, 581 (7807) : 178-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:89/0  |  提交时间:2020/07/03

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy(1,2). Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy(3-8). Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products(9-16), and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 +/- 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction(17). Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.


  
Large and projected strengthening moisture limitation on end-of-season photosynthesis 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (17) : 9216-9222
作者:  Zhang, Yao;  Parazoo, Nicholas C.;  Williams, A. Park;  Zhou, Sha;  Gentine, Pierre
收藏  |  浏览/下载:12/0  |  提交时间:2020/05/13
end of photosynthesis  solar induced fluorescence (SIF)  gross primary production (GPP)  climate change  water stress  
Seasonal hysteresis of surface urban heat islands 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (13) : 7082-7089
作者:  Manoli, Gabriele;  Fatichi, Simone;  Bou-Zeid, Elie;  Katul, Gabriel G.
收藏  |  浏览/下载:15/0  |  提交时间:2020/05/13
cities  hysteresis  seasonality  surface temperature  urban heat island  
Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Jiang, Xianyuan;  Wang, Fei;  Wei, Qi;  Li, Hansheng;  Shang, Yuequn;  Zhou, Wenjia;  Wang, Cheng;  Cheng, Peihong;  Chen, Qi;  Chen, Liwei;  Ning, Zhijun
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/13
Changes in atmospheric shortwave absorption as important driver of dimming and brightening 期刊论文
NATURE GEOSCIENCE, 2020, 13 (2) : 110-+
作者:  Schwarz, M.;  Folini, D.;  Yang, S.;  Allan, R. P.;  Wild, M.
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
Power generation from ambient humidity using protein nanowires 期刊论文
NATURE, 2020, 578 (7796) : 550-+
作者:  Luong, Duy X.;  Bets, Ksenia V.;  Algozeeb, Wala Ali;  Stanford, Michael G.;  Kittrell, Carter;  Chen, Weiyin;  Salvatierra, Rodrigo V.;  Ren, Muqing;  McHugh, Emily A.;  Advincula, Paul A.;  Wang, Zhe;  Bhatt, Mahesh;  Guo, Hua;  Mancevski, Vladimir;  Shahsavari, Rouzbeh;  Yakobson, Boris I.;  Tour, James M.
收藏  |  浏览/下载:85/0  |  提交时间:2020/07/03

Harvesting energy from the environment offers the promise of clean power for self-sustained systems(1,2). Known technologies-such as solar cells, thermoelectric devices and mechanical generators-have specific environmental requirements that restrict where they can be deployed and limit their potential for continuous energy production(3-5). The ubiquity of atmospheric moisture offers an alternative. However, existing moisture-based energy-harvesting technologies can produce only intermittent, brief (shorter than 50 seconds) bursts of power in the ambient environment, owing to the lack of a sustained conversion mechanism(6-12). Here we show that thin-film devices made from nanometre-scale protein wires harvested from the microbe Geobacter sulfurreducens can generate continuous electric power in the ambient environment. The devices produce a sustained voltage of around 0.5 volts across a 7-micrometre-thick film, with a current density of around 17 microamperes per square centimetre. We find the driving force behind this energy generation to be a self-maintained moisture gradient that forms within the film when the film is exposed to the humidity that is naturally present in air. Connecting several devices linearly scales up the voltage and current to power electronics. Our results demonstrate the feasibility of a continuous energy-harvesting strategy that is less restricted by location or environmental conditions than other sustainable approaches.


A new type of energy-harvesting device, based on protein nanowires from the microbe Geobacter sulforreducens, can generate a sustained power output by producing a moisture gradient across the nanowire film using natural humidity.


  
On-device lead sequestration for perovskite solar cells 期刊论文
NATURE, 2020, 578 (7796) : 555-+
作者:  Fruchart, Michel;  Zhou, Yujie;  Vitelli, Vincenzo
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Perovskite solar cells, as an emerging high-efficiency and low-cost photovoltaic technology(1-6), face obstacles on their way towards commercialization. Substantial improvements have been made to device stability(7-10), but potential issues with lead toxicity and leaching from devices remain relatively unexplored(11-16). The potential for lead leakage could be perceived as an environmental and public health risk when using perovskite solar cells in building-integrated photovoltaics(17-23). Here we present a chemical approach for on-device sequestration of more than 96 per cent of lead leakage caused by severe device damage. A coating of lead-absorbing material is applied to the front and back sides of the device stack. On the glass side of the front transparent conducting electrode, we use a transparent lead-absorbing molecular film containing phosphonic acid groups that bind strongly to lead. On the back (metal) electrode side, we place a polymer film blended with lead-chelating agents between the metal electrode and a standard photovoltaic packing film. The lead-absorbing films on both sides swell to absorb the lead, rather than dissolve, when subjected to water soaking, thus retaining structural integrity for easy collection of lead after damage.


Using lead-absorbing materials to coat the front and back of perovskite solar cells can prevent lead leaching from damaged devices, without affecting the device performance or long-term operation stability.


  
Low cost satellite constellations for nearly continuous global coverage 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Singh, Lake A.;  Whittecar, William R.;  DiPrinzio, Marc D.;  Herman, Jonathan D.;  Ferringer, Matthew P.;  Reed, Patrick M.
收藏  |  浏览/下载:7/0  |  提交时间:2020/05/13