GSTDTAP

浏览/检索结果: 共12条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Internal state dynamics shape brainwide activity and foraging behaviour 期刊论文
NATURE, 2020, 577 (7789) : 239-+
作者:  Marques, Joao C.;  Li, Meng;  Schaak, Diane;  Robson, Drew N.;  Li, Jennifer M.
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/03

The brain has persistent internal states that can modulate every aspect of an animal'  s mental experience(1-4). In complex tasks such as foraging, the internal state is dynamic(5-8). Caenorhabditis elegans alternate between local search and global dispersal(5). Rodents and primates exhibit trade-offs between exploitation and exploration(6,7). However, fundamental questions remain about how persistent states are maintained in the brain, which upstream networks drive state transitions and how state-encoding neurons exert neuromodulatory effects on sensory perception and decision-making to govern appropriate behaviour. Here, using tracking microscopy to monitor whole-brain neuronal activity at cellular resolution in freely moving zebrafish larvae(9), we show that zebrafish spontaneously alternate between two persistent internal states during foraging for live prey (Paramecia). In the exploitation state, the animal inhibits locomotion and promotes hunting, generating small, localized trajectories. In the exploration state, the animal promotes locomotion and suppresses hunting, generating long-ranging trajectories that enhance spatial dispersion. We uncover a dorsal raphe subpopulation with persistent activity that robustly encodes the exploitation state. The exploitation-state-encoding neurons, together with a multimodal trigger network that is associated with state transitions, form a stochastically activated nonlinear dynamical system. The activity of this oscillatory network correlates with a global retuning of sensorimotor transformations during foraging that leads to marked changes in both the motivation to hunt for prey and the accuracy of motor sequences during hunting. This work reveals an important hidden variable that shapes the temporal structure of motivation and decision-making.


  
Hidden neural states underlie canary song syntax 期刊论文
NATURE, 2020
作者:  Bao, Han;  Duan, Junlei;  Jin, Shenchao;  Lu, Xingda;  Li, Pengxiong;  Qu, Weizhi;  Wang, Mingfeng;  Novikova, Irina;  Mikhailov, Eugeniy E.;  Zhao, Kai-Feng;  Molmer, Klaus;  Shen, Heng;  Xiao, Yanhong
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Neurons in the canary premotor cortex homologue encode past song phrases and transitions, carrying information relevant to future choice of phrases as '  hidden states'  during song.


Coordinated skills such as speech or dance involve sequences of actions that follow syntactic rules in which transitions between elements depend on the identities and order of past actions. Canary songs consist of repeated syllables called phrases, and the ordering of these phrases follows long-range rules(1)in which the choice of what to sing depends on the song structure many seconds prior. The neural substrates that support these long-range correlations are unknown. Here, using miniature head-mounted microscopes and cell-type-specific genetic tools, we observed neural activity in the premotor nucleus HVC(2-4)as canaries explored various phrase sequences in their repertoire. We identified neurons that encode past transitions, extending over four phrases and spanning up to four seconds and forty syllables. These neurons preferentially encode past actions rather than future actions, can reflect more than one song history, and are active mostly during the rare phrases that involve history-dependent transitions in song. These findings demonstrate that the dynamics of HVC include '  hidden states'  that are not reflected in ongoing behaviour but rather carry information about prior actions. These states provide a possible substrate for the control of syntax transitions governed by long-range rules.


  
Chiral superconductivity in heavy-fermion metal UTe2 期刊论文
NATURE, 2020, 579 (7800) : 523-527
作者:  Chica, Daniel G.;  He, Yihui;  McCall, Kyle M.;  Chung, Duck Young;  Pak, Rahmi O.;  Trimarchi, Giancarlo;  Liu, Zhifu;  De Lurgio, Patrick M.;  Wessels, Bruce W.;  Kanatzidis, Mercouri G.
收藏  |  浏览/下载:45/0  |  提交时间:2020/07/03

Scanning tunnelling microscopy and spectroscopy measurements show chiral edge states inside the superconducting gap of the heavy-fermion superconductor UTe2, indicating the presence of chiral spin-triplet superconductivity.


Spin-triplet superconductors are condensates of electron pairs with spin 1 and an odd-parity wavefunction(1). An interesting manifestation of triplet pairing is the chiral p-wave state, which is topologically non-trivial and provides a natural platform for realizing Majorana edge modes(2,3). However, triplet pairing is rare in solid-state systems and has not been unambiguously identified in any bulk compound so far. Given that pairing is usually mediated by ferromagnetic spin fluctuations, uranium-based heavy-fermion systems containing f-electron elements, which can harbour both strong correlations and magnetism, are considered ideal candidates for realizing spin-triplet superconductivity(4). Here we present scanning tunnelling microscopy studies of the recently discovered heavy-fermion superconductor UTe2, which has a superconducting transition temperature of 1.6 kelvin(5). We find signatures of coexisting Kondo effect and superconductivity that show competing spatial modulations within one unit cell. Scanning tunnelling spectroscopy at step edges reveals signatures of chiral in-gap states, which have been predicted to exist at the boundaries of topological superconductors. Combined with existing data that indicate triplet pairing in UTe2, the presence of chiral states suggests that UTe2 is a strong candidate for chiral-triplet topological superconductivity.


  
Pancreatic cancer hidden in plain sight 期刊论文
NATURE, 2020, 581 (7806) : 34-35
作者:  Zung, Jessica L.;  McBride, Carolyn S.
收藏  |  浏览/下载:4/0  |  提交时间:2020/07/03
Dualities and non-Abelian mechanics 期刊论文
NATURE, 2020, 577 (7792) : 636-+
作者:  Song, Xinyang;  Sun, Ximei;  Oh, Sungwhan F.;  Wu, Meng;  Zhang, Yanbo;  Zheng, Wen;  Geva-Zatorsky, Naama;  Jupp, Ray;  Mathis, Diane;  Benoist, Christophe;  Kasper, Dennis L.
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

Dualities-mathematical mappings between different systems-can act as hidden symmetries that enable materials design beyond that suggested by crystallographic space groups.


Dualities are mathematical mappings that reveal links between apparently unrelated systems in virtually every branch of physics(1-8). Systems mapped onto themselves by a duality transformation are called self-dual and exhibit remarkable properties, as exemplified by the scale invariance of an Ising magnet at the critical point. Here we show how dualities can enhance the symmetries of a dynamical matrix (or Hamiltonian), enabling the design of metamaterials with emergent properties that escape a standard group theory analysis. As an illustration, we consider twisted kagome lattices(9-15), reconfigurable mechanical structures that change shape by means of a collapse mechanism(9). We observe that pairs of distinct configurations along the mechanism exhibit the same vibrational spectrum and related elastic moduli. We show that these puzzling properties arise from a duality between pairs of configurations on either side of a mechanical critical point. The critical point corresponds to a self-dual structure with isotropic elasticity even in the absence of spatial symmetries and a twofold-degenerate spectrum over the entire Brillouin zone. The spectral degeneracy originates from a version of Kramers'  theorem(16,17) in which fermionic time-reversal invariance is replaced by a hidden symmetry emerging at the self-dual point. The normal modes of the self-dual systems exhibit non-Abelian geometric phases(18,19) that affect the semiclassical propagation of wavepackets(20), leading to non-commuting mechanical responses. Our results hold promise for holonomic computation(21) and mechanical spintronics by allowing on-the-fly manipulation of synthetic spins carried by phonons.


  
Hidden diversity of vacancy networks in Prussian blue analogues 期刊论文
NATURE, 2020, 578 (7794) : 256-+
作者:  Hendrickx, N. W.;  Franke, D. P.;  Sammak, A.;  Scappucci, G.;  Veldhorst, M.
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Prussian blue analogues (PBAs) are a diverse family of microporous inorganic solids, known for their gas storage ability(1), metal-ion immobilization(2), proton conduction(3), and stimuli-dependent magnetic(4,5), electronic(6) and optical(7) properties. This family of materials includes the double-metal cyanide catalysts(8,9) and the hexacyanoferrate/ hexacyanomanganate battery materials(10,11). Central to the various physical properties of PBAs is their ability to reversibly transport mass, a process enabled by structural vacancies. Conventionally presumed to be random(12,13), vacancy arrangements are crucial because they control micropore-network characteristics, and hence the diffusivity and adsorption profiles(14,15). The long-standing obstacle to characterizing the vacancy networks of PBAs is the inaccessibility of single crystals(16). Here we report the growth of single crystals of various PBAs and the measurement and interpretation of their X-ray diffuse scattering patterns. We identify a diversity of non-random vacancy arrangements that is hidden from conventional crystallographic powder analysis. Moreover, we explain this unexpected phase complexity in terms of a simple microscopic model that is based on local rules of electroneutrality and centrosymmetry. The hidden phase boundaries that emerge demarcate vacancynetwork polymorphs with very different micropore characteristics. Our results establish a foundation for correlated defect engineering in PBAs as a means of controlling storage capacity, anisotropy and transport efficiency.


  
Supercomputer scours fossil record for Earth's hidden extinctions 期刊论文
NATURE, 2020, 577 (7791) : 458-459
作者:  Callaway, Ewen
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/03

Palaeontologists have charted 300 million years of Earth'  s history in breathtaking detail.


Palaeontologists have charted 300 million years of Earth'  s history in breathtaking detail.


  
ROOTS OF MENTAL ILLNESS 期刊论文
NATURE, 2020, 581 (7806) : 19-21
作者:  Sohn, Emily
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Psychiatrists have a dizzying array of diagnoses and not enough treatments. Hunting for the hidden biology underlying mental disorders could help.


Psychiatrists have a dizzying array of diagnoses and not enough treatments. Hunting for the hidden biology underlying mental disorders could help.


  
Hunt for hidden research riches 期刊论文
NATURE, 2019, 570 (7759) : 127-129
作者:  Dolgin, Elie
收藏  |  浏览/下载:0/0  |  提交时间:2019/11/27
Challenging local realism with human choices 期刊论文
NATURE, 2018, 557 (7704) : 212-+
作者:  Abellan, C.;  Acin, A.;  Alarcon, A.;  Alibart, O.;  Andersen, C. K.;  Andreoli, F.;  Beckert, A.;  Beduini, F. A.;  Bendersky, A.;  Bentivegna, M.;  Bierhorst, P.;  Burchardt, D.;  Cabello, A.;  Carine, J.;  Carrasco, S.;  Carvacho, G.;  Cavalcanti, D.;  Chaves, R.;  Cortes-Vega, J.;  Cuevas, A.;  Delgado, A.;  de Riedmatten, H.;  Eichler, C.;  Farrera, P.;  Fuenzalida, J.;  Garcia-Matos, M.;  Garthoff, R.;  Gasparinetti, S.;  Gerrits, T.;  Jouneghani, F. Ghafari;  Glancy, S.;  Gomez, E. S.;  Gonzalez, P.;  Guan, J-Y;  Handsteiner, J.;  Heinsoo, J.;  Heinze, G.;  Hirschmann, A.;  Jimenez, O.;  Kaiser, F.;  Knill, E.;  Knoll, L. T.;  Krinner, S.;  Kurpiers, P.;  Larotonda, M. A.;  Larsson, J-A;  Lenhard, A.;  Li, H.;  Li, M-H;  Lima, G.;  Liu, B.;  Liu, Y.;  Lopez Grande, I. H.;  Lunghi, T.;  Ma, X.;  Magana-Loaiza, O. S.;  Magnard, P.;  Magnoni, A.;  Marti-Prieto, M.;  Martinez, D.;  Mataloni, P.;  Mattar, A.;  Mazzera, M.;  Mirin, R. P.;  Mitchell, M. W.;  Nam, S.;  Oppliger, M.;  Pan, J-W;  Patel, R. B.;  Pryde, G. J.;  Rauch, D.;  Redeker, K.;  Rielander, D.;  Ringbauer, M.;  Roberson, T.;  Rosenfeld, W.;  Salathe, Y.;  Santodonato, L.;  Sauder, G.;  Scheidl, T.;  Schmiegelow, C. T.;  Sciarrino, F.;  Seri, A.;  Shalm, L. K.;  Shi, S-C;  Slussarenko, S.;  Stevens, M. J.;  Tanzilli, S.;  Toledo, F.;  Tura, J.;  Ursin, R.;  Vergyris, P.;  Verma, V. B.;  Walter, T.;  Wallraff, A.;  Wang, Z.;  Weinfurter, H.;  Weston, M. M.;  White, A. G.;  Wu, C.;  Xavier, G. B.;  You, L.;  Yuan, X.;  Zeilinger, A.;  Zhang, Q.;  Zhang, W.;  Zhong, J.
收藏  |  浏览/下载:13/0  |  提交时间:2019/11/27