GSTDTAP

浏览/检索结果: 共2条,第1-2条 帮助

已选(0)清除 条数/页:   排序方式:
Skeleton of a Cretaceous mammal from Madagascar reflects long-term insularity 期刊论文
NATURE, 2020
作者:  Petit, L.;  Eenink, H. G. J.;  Russ, M.;  Lawrie, W. I. L.;  Hendrickx, N. W.;  Philips, S. G. J.;  Clarke, J. S.;  Vandersypen, L. M. K.;  Veldhorst, M.
收藏  |  浏览/下载:9/0  |  提交时间:2020/05/13

The fossil record of mammaliaforms (mammals and their closest relatives) of the Mesozoic era from the southern supercontinent Gondwana is far less extensive than that from its northern counterpart, Laurasia(1,2). Among Mesozoic mammaliaforms, Gondwanatheria is one of the most poorly known clades, previously represented by only a single cranium and isolated jaws and teeth(1-5). As a result, the anatomy, palaeobiology and phylogenetic relationships of gondwanatherians remain unclear. Here we report the discovery of an articulated and very well-preserved skeleton of a gondwanatherian of the latest age (72.1-66 million years ago) of the Cretaceous period from Madagascar that we assign to a new genus and species, Adalatherium hui. To our knowledge, the specimen is the most complete skeleton of a Gondwanan Mesozoic mammaliaform that has been found, and includes the only postcranial material and ascending ramus of the dentary known for any gondwanatherian. A phylogenetic analysis including the new taxon recovers Gondwanatheria as the sister group to Multituberculata. The skeleton, which represents one of the largest of the Gondwanan Mesozoic mammaliaforms, is particularly notable for exhibiting many unique features in combination with features that are convergent on those of therian mammals. This uniqueness is consistent with a lineage history for A. hui of isolation on Madagascar for more than 20 million years.


Adalatherium hui, a newly discovered gondwanatherian mammal from Madagascar dated to near the end of the Cretaceous period, shows features consistent with a long evolutionary trajectory of isolation in an insular environment.


  
Hidden diversity of vacancy networks in Prussian blue analogues 期刊论文
NATURE, 2020, 578 (7794) : 256-+
作者:  Hendrickx, N. W.;  Franke, D. P.;  Sammak, A.;  Scappucci, G.;  Veldhorst, M.
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

Prussian blue analogues (PBAs) are a diverse family of microporous inorganic solids, known for their gas storage ability(1), metal-ion immobilization(2), proton conduction(3), and stimuli-dependent magnetic(4,5), electronic(6) and optical(7) properties. This family of materials includes the double-metal cyanide catalysts(8,9) and the hexacyanoferrate/ hexacyanomanganate battery materials(10,11). Central to the various physical properties of PBAs is their ability to reversibly transport mass, a process enabled by structural vacancies. Conventionally presumed to be random(12,13), vacancy arrangements are crucial because they control micropore-network characteristics, and hence the diffusivity and adsorption profiles(14,15). The long-standing obstacle to characterizing the vacancy networks of PBAs is the inaccessibility of single crystals(16). Here we report the growth of single crystals of various PBAs and the measurement and interpretation of their X-ray diffuse scattering patterns. We identify a diversity of non-random vacancy arrangements that is hidden from conventional crystallographic powder analysis. Moreover, we explain this unexpected phase complexity in terms of a simple microscopic model that is based on local rules of electroneutrality and centrosymmetry. The hidden phase boundaries that emerge demarcate vacancynetwork polymorphs with very different micropore characteristics. Our results establish a foundation for correlated defect engineering in PBAs as a means of controlling storage capacity, anisotropy and transport efficiency.