GSTDTAP

浏览/检索结果: 共148条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Warming trends increasingly dominate global ocean 期刊论文
NATURE CLIMATE CHANGE, 2020
作者:  Johnson, Gregory C.;  Lyman, John M.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/21
Integrating data mining and transmission theory in the ecology of infectious diseases 期刊论文
ECOLOGY LETTERS, 2020, 23 (8) : 1178-1188
作者:  Han, Barbara A.;  39;Regan, Suzanne M.
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/25
Boosted regression  disease dynamics  disease macroecology  pathogen transmission  random forest  statistical learning  zoonosis  zoonotic spillover  
Social-media and newspaper reports reveal large-scale meteorological drivers of floods on Sumatra 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Baranowski, Dariusz B.;  Flatau, Maria K.;  Flatau, Piotr J.;  Karnawati, Dwikorita;  Barabasz, Katarzyna;  Labuz, Michal;  Latos, Beata;  Schmidt, Jerome M.;  Paski, Jaka A., I;  Marzuki
收藏  |  浏览/下载:9/0  |  提交时间:2020/05/20
Pulse Heat Stress and Parasitism in a Warming World 期刊论文
TRENDS IN ECOLOGY & EVOLUTION, 2020, 35 (8) : 704-715
作者:  Claar, Danielle C.;  Wood, Chelsea L.
收藏  |  浏览/下载:6/0  |  提交时间:2020/05/20
Artificial Intelligence Accidentally Learned Ecology through Video Games 期刊论文
TRENDS IN ECOLOGY & EVOLUTION, 2020, 35 (7) : 557-560
作者:  Barbe, Lou;  Mony, Cendrine;  Abbott, Benjamin W.
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
A unifying framework for the transient parasite dynamics of migratory hosts 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (20) : 10897-10903
作者:  Peacock, Stephanie J.;  Krkosek, Martin;  Lewis, Mark A.;  Molnar, Peter K.
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
migration  wildlife health  host-parasite  population dynamics  
Localization and delocalization of light in photonic moire lattices 期刊论文
NATURE, 2020, 577 (7788) : 42-+
作者:  Wang, Peng;  Zheng, Yuanlin;  Chen, Xianfeng;  Huang, Changming;  Kartashov, Yaroslav V.;  Torner, Lluis;  Konotop, Vladimir V.;  Ye, Fangwei
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

Moire lattices consist of two superimposed identical periodic structures with a relative rotation angle. Moire lattices have several applications in everyday life, including artistic design, the textile industry, architecture, image processing, metrology and interferometry. For scientific studies, they have been produced using coupled graphene-hexagonal boron nitride monolayers(1,2), graphene-graphene layers(3,4) and graphene quasicrystals on a silicon carbide surface(5). The recent surge of interest in moire lattices arises from the possibility of exploring many salient physical phenomena in such systems  examples include commensurable-incommensurable transitions and topological defects(2), the emergence of insulating states owing to band flattening(3,6), unconventional superconductivity(4) controlled by the rotation angle(7,8), the quantum Hall effect(9), the realization of non-Abelian gauge potentials(10) and the appearance of quasicrystals at special rotation angles(11). A fundamental question that remains unexplored concerns the evolution of waves in the potentials defined by moire lattices. Here we experimentally create two-dimensional photonic moire lattices, which-unlike their material counterparts-have readily controllable parameters and symmetry, allowing us to explore transitions between structures with fundamentally different geometries (periodic, general aperiodic and quasicrystal). We observe localization of light in deterministic linear lattices that is based on flatband physics(6), in contrast to previous schemes based on light diffusion in optical quasicrystals(12), where disorder is required(13) for the onset of Anderson localization(14) (that is, wave localization in random media). Using commensurable and incommensurable moire patterns, we experimentally demonstrate the twodimensional localization-delocalization transition of light. Moire lattices may feature an almost arbitrary geometry that is consistent with the crystallographic symmetry groups of the sublattices, and therefore afford a powerful tool for controlling the properties of light patterns and exploring the physics of periodic-aperiodic phase transitions and two-dimensional wavepacket phenomena relevant to several areas of science, including optics, acoustics, condensed matter and atomic physics.


  
Engineering covalently bonded 2D layered materials by self-intercalation 期刊论文
NATURE, 2020, 581 (7807) : 171-+
作者:  Shang, Jian;  Ye, Gang;  Shi, Ke;  Wan, Yushun;  Luo, Chuming;  Aihara, Hideki;  Geng, Qibin;  Auerbach, Ashley;  Li, Fang
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Two-dimensional (2D) materials(1-5) offer a unique platform from which to explore the physics of topology and many-body phenomena. New properties can be generated by filling the van der Waals gap of 2D materials with intercalants(6,7)  however, post-growth intercalation has usually been limited to alkali metals(8-10). Here we show that the self-intercalation of native atoms(11,12) into bilayer transition metal dichalcogenides during growth generates a class of ultrathin, covalently bonded materials, which we name ic-2D. The stoichiometry of these materials is defined by periodic occupancy patterns of the octahedral vacancy sites in the van der Waals gap, and their properties can be tuned by varying the coverage and the spatial arrangement of the filled sites(7,13). By performing growth under high metal chemical potential(14,15) we can access a range of tantalum-intercalated TaS(Se)(y), including 25% Ta-intercalated Ta9S16, 33.3% Ta-intercalated Ta7S12, 50% Ta-intercalated Ta10S16, 66.7% Ta-intercalated Ta8Se12 (which forms a Kagome lattice) and 100% Ta-intercalated Ta9Se12. Ferromagnetic order was detected in some of these intercalated phases. We also demonstrate that self-intercalated V11S16, In11Se16 and FexTey can be grown under metal-rich conditions. Our work establishes self-intercalation as an approach through which to grow a new class of 2D materials with stoichiometry- or composition-dependent properties.


  
Extreme rainfall triggered the 2018 rift eruption at Kilauea Volcano 期刊论文
NATURE, 2020, 580 (7804) : 491-+
作者:  Cloutier, Richard;  Clement, Alice M.;  Lee, Michael S. Y.;  Noel, Roxanne;  Bechard, Isabelle;  Roy, Vincent;  Long, John A.
收藏  |  浏览/下载:33/0  |  提交时间:2020/05/13

The May 2018 rift intrusion and eruption of Kilauea Volcano, Hawai'  i, represented one of its most extraordinary eruptive sequences in at least 200 years, yet the trigger mechanism remains elusive(1). The event was preceded by several months of anomalously high precipitation. It has been proposed that rainfall can modulate shallow volcanic activity(2,3), but it remains unknown whether it can have impacts at the greater depths associated with magma transport. Here we show that immediately before and during the eruption, infiltration of rainfall into Kilauea Volcano'  s subsurface increased pore pressure at depths of 1 to 3 kilometres by 0.1 to 1 kilopascals, to its highest pressure in almost 50 years. We propose that weakening and mechanical failure of the edifice was driven by changes in pore pressure within the rift zone, prompting opportunistic dyke intrusion and ultimately facilitating the eruption. A precipitation-induced eruption trigger is consistent with the lack of precursory summit inflation, showing that this intrusion-unlike others-was not caused by the forceful intrusion of new magma into the rift zone. Moreover, statistical analysis of historic eruption occurrence suggests that rainfall patterns contribute substantially to the timing and frequency of Kilauea'  s eruptions and intrusions. Thus, volcanic activity can be modulated by extreme rainfall triggering edifice rock failure-a factor that should be considered when assessing volcanic hazards. Notably, the increasingly extreme weather patterns associated with ongoing anthropogenic climate change could increase the potential for rainfall-triggered volcanic phenomena worldwide.


Immediately before and during the eruption of Ki & x304  lauea Volcano in May 2018, anomalously high rainfall increased the pore pressure in the subsurface to its highest level in 50 years, causing weakening and mechanical failure of the edifice.


  
Mapping the twist-angle disorder and Landau levels in magic-angle graphene 期刊论文
NATURE, 2020, 581 (7806) : 47-+
作者:  Luck, Katja;  39;Amata, Cassandra
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

The recently discovered flat electronic bands and strongly correlated and superconducting phases in magic-angle twisted bilayer graphene (MATBG)(1,2) crucially depend on the interlayer twist angle, theta. Although control of the global theta with a precision of about 0.1 degrees has been demonstrated(1-7), little information is available on the distribution of the local twist angles. Here we use a nanoscale on-tip scanning superconducting quantum interference device (SQUID-on-tip)(8) to obtain tomographic images of the Landau levels in the quantum Hall state(9) and to map the local theta variations in hexagonal boron nitride (hBN)-encapsulated MATBG devices with relative precision better than 0.002 degrees and a spatial resolution of a few moire periods. We find a correlation between the degree of theta disorder and the quality of the MATBG transport characteristics and show that even state-of-the-art devices-which exhibit correlated states, Landau fans and superconductivity-display considerable local variation in theta of up to 0.1 degrees, exhibiting substantial gradients and networks of jumps, and may contain areas with no local MATBG behaviour. We observe that the correlated states in MATBG are particularly fragile with respect to the twist-angle disorder. We also show that the gradients of theta generate large gate-tunable in-plane electric fields, unscreened even in the metallic regions, which profoundly alter the quantum Hall state by forming edge channels in the bulk of the sample and may affect the phase diagram of the correlated and superconducting states. We thus establish the importance of theta disorder as an unconventional type of disorder enabling the use of twist-angle gradients for bandstructure engineering, for realization of correlated phenomena and for gate-tunable built-in planar electric fields for device applications.


SQUID-on-tip tomographic imaging of Landau levels in magic-angle graphene provides nanoscale maps of local twist-angle disorder and shows that its properties are fundamentally different from common types of disorder.