GSTDTAP  > 地球科学
DOI10.1038/s41586-019-1851-6
Localization and delocalization of light in photonic moire lattices
Wang, Peng1,2; Zheng, Yuanlin1,2; Chen, Xianfeng1,2; Huang, Changming3; Kartashov, Yaroslav V.4,5; Torner, Lluis4,6; Konotop, Vladimir V.7,8; Ye, Fangwei1,2
2020-05-01
发表期刊NATURE
ISSN0028-0836
EISSN1476-4687
出版年2020
卷号577期号:7788页码:42-+
文章类型Article
语种英语
国家Peoples R China; Spain; Russia; Portugal
英文关键词

Moire lattices consist of two superimposed identical periodic structures with a relative rotation angle. Moire lattices have several applications in everyday life, including artistic design, the textile industry, architecture, image processing, metrology and interferometry. For scientific studies, they have been produced using coupled graphene-hexagonal boron nitride monolayers(1,2), graphene-graphene layers(3,4) and graphene quasicrystals on a silicon carbide surface(5). The recent surge of interest in moire lattices arises from the possibility of exploring many salient physical phenomena in such systems examples include commensurable-incommensurable transitions and topological defects(2), the emergence of insulating states owing to band flattening(3,6), unconventional superconductivity(4) controlled by the rotation angle(7,8), the quantum Hall effect(9), the realization of non-Abelian gauge potentials(10) and the appearance of quasicrystals at special rotation angles(11). A fundamental question that remains unexplored concerns the evolution of waves in the potentials defined by moire lattices. Here we experimentally create two-dimensional photonic moire lattices, which-unlike their material counterparts-have readily controllable parameters and symmetry, allowing us to explore transitions between structures with fundamentally different geometries (periodic, general aperiodic and quasicrystal). We observe localization of light in deterministic linear lattices that is based on flatband physics(6), in contrast to previous schemes based on light diffusion in optical quasicrystals(12), where disorder is required(13) for the onset of Anderson localization(14) (that is, wave localization in random media). Using commensurable and incommensurable moire patterns, we experimentally demonstrate the twodimensional localization-delocalization transition of light. Moire lattices may feature an almost arbitrary geometry that is consistent with the crystallographic symmetry groups of the sublattices, and therefore afford a powerful tool for controlling the properties of light patterns and exploring the physics of periodic-aperiodic phase transitions and two-dimensional wavepacket phenomena relevant to several areas of science, including optics, acoustics, condensed matter and atomic physics.


领域地球科学 ; 气候变化 ; 资源环境
收录类别SCI-E
WOS记录号WOS:000505617400023
WOS关键词ANDERSON LOCALIZATION ; MOBILITY EDGE ; GRAPHENE ; TRANSITION ; TRANSPORT ; WAVE
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/281092
专题地球科学
资源环境科学
气候变化
作者单位1.Shanghai Jiao Tong Univ, Sch Phys & Astron, Shanghai, Peoples R China;
2.Shanghai Jiao Tong Univ, State Key Lab Adv Opt Commun Syst & Networks, Shanghai, Peoples R China;
3.Changzhi Univ, Dept Elect Informat & Phys, Changzhi, Shanxi, Peoples R China;
4.Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels, Spain;
5.Russian Acad Sci, Inst Spect, Troitsk, Russia;
6.Univ Politecn Cataluna, Barcelona, Spain;
7.Univ Lisbon, Dept Fis, Fac Ciencias, Lisbon, Portugal;
8.Univ Lisbon, Ctr Fis Teor & Computac, Fac Ciencias, Lisbon, Portugal
推荐引用方式
GB/T 7714
Wang, Peng,Zheng, Yuanlin,Chen, Xianfeng,et al. Localization and delocalization of light in photonic moire lattices[J]. NATURE,2020,577(7788):42-+.
APA Wang, Peng.,Zheng, Yuanlin.,Chen, Xianfeng.,Huang, Changming.,Kartashov, Yaroslav V..,...&Ye, Fangwei.(2020).Localization and delocalization of light in photonic moire lattices.NATURE,577(7788),42-+.
MLA Wang, Peng,et al."Localization and delocalization of light in photonic moire lattices".NATURE 577.7788(2020):42-+.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Peng]的文章
[Zheng, Yuanlin]的文章
[Chen, Xianfeng]的文章
百度学术
百度学术中相似的文章
[Wang, Peng]的文章
[Zheng, Yuanlin]的文章
[Chen, Xianfeng]的文章
必应学术
必应学术中相似的文章
[Wang, Peng]的文章
[Zheng, Yuanlin]的文章
[Chen, Xianfeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。