GSTDTAP

浏览/检索结果: 共113条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Potential for large-scale CO2 removal via enhanced rock weathering with croplands 期刊论文
NATURE, 2020, 583 (7815) : 242-+
作者:  David J. Beerling;  Euripides P. Kantzas;  Mark R. Lomas;  Peter Wade;  Rafael M. Eufrasio;  Phil Renforth;  Binoy Sarkar;  M. Grace Andrews;  Rachael H. James;  Christopher R. Pearce;  Jean-Francois Mercure;  Hector Pollitt;  Philip B. Holden;  Neil R. Edwards;  Madhu Khanna;  Lenny Koh;  Shaun Quegan;  Nick F. Pidgeon;  Ivan A. Janssens;  James Hansen;  Steven A. Banwart
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/14

Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change(1). ERW also has possible co-benefits for improved food and soil security, and reduced ocean acidification(2-4). Here we use an integrated performance modelling approach to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius(5). China, India, the USA and Brazil have great potential to help achieve average global CDR goals of 0.5 to 2gigatonnes of carbon dioxide (CO2) per year with extraction costs of approximately US$80-180 per tonne of CO2. These goals and costs are robust, regardless of future energy policies. Deployment within existing croplands offers opportunities to align agriculture and climate policy. However, success will depend upon overcoming political and social inertia to develop regulatory and incentive frameworks. We discuss the challenges and opportunities of ERW deployment, including the potential for excess industrial silicate materials (basalt mine overburden, concrete, and iron and steel slag) to obviate the need for new mining, as well as uncertainties in soil weathering rates and land-ocean transfer of weathered products.


  
Tropical forest loss enhanced by large-scale land acquisitions 期刊论文
NATURE GEOSCIENCE, 2020, 13 (7) : 482-+
作者:  Davis, Kyle Frankel;  39;Angelo, Jampel;  39;Odorico, Paolo
收藏  |  浏览/下载:15/0  |  提交时间:2020/06/29
A sensory appendage protein protects malaria vectors from pyrethroids 期刊论文
NATURE, 2020, 577 (7790) : 376-+
作者:  Coyle, Diane
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Pyrethroid-impregnated bed nets have driven considerable reductions in malaria-associated morbidity and mortality in Africa since the beginning of the century(1). The intense selection pressure exerted by bed nets has precipitated widespread and escalating resistance to pyrethroids in African Anopheles populations, threatening to reverse the gains that been made by malaria control(2). Here we show that expression of a sensory appendage protein (SAP2), which is enriched in the legs, confers pyrethroid resistance to Anopheles gambiae. Expression of SAP2 is increased in insecticide-resistant populations and is further induced after the mosquito comes into contact with pyrethroids. SAP2 silencing fully restores mortality of the mosquitoes, whereas SAP2 overexpression results in increased resistance, probably owing to high-affinity binding of SAP2 to pyrethroid insecticides. Mining of genome sequence data reveals a selective sweep near the SAP2 locus in the mosquito populations of three West African countries (Cameroon, Guinea and Burkina Faso) with the observed increase in haplotype-associated single-nucleotide polymorphisms mirroring the increasing resistance of mosquitoes to pyrethroids reported in Burkina Faso. Our study identifies a previously undescribed mechanism of insecticide resistance that is likely to be highly relevant to malaria control efforts.


  
The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K 期刊论文
NATURE, 2020
作者:  Chen, Guorui;  Sharpe, Aaron L.;  Fox, Eli J.;  Zhang, Ya-Hui;  Wang, Shaoxin;  Jiang, Lili;  Lyu, Bosai;  Li, Hongyuan;  Watanabe, Kenji;  Taniguchi, Takashi;  Shi, Zhiwen;  Senthil, T.;  Goldhaber-Gordon, David;  Zhang, Yuanbo;  Wang, Feng
收藏  |  浏览/下载:44/0  |  提交时间:2020/07/03

The cyclin-dependent kinase inhibitor CR8 acts as a molecular glue compound by inducing the formation of a complex between CDK12-cyclin K and DDB1, which results in the ubiquitination and degradation of cyclin K.


Molecular glue compounds induce protein-protein interactions that, in the context of a ubiquitin ligase, lead to protein degradation(1). Unlike traditional enzyme inhibitors, these molecular glue degraders act substoichiometrically to catalyse the rapid depletion of previously inaccessible targets(2). They are clinically effective and highly sought-after, but have thus far only been discovered serendipitously. Here, through systematically mining databases for correlations between the cytotoxicity of 4,518 clinical and preclinical small molecules and the expression levels of E3 ligase components across hundreds of human cancer cell lines(3-5), we identify CR8-a cyclin-dependent kinase (CDK) inhibitor(6)-as a compound that acts as a molecular glue degrader. The CDK-bound form of CR8 has a solvent-exposed pyridyl moiety that induces the formation of a complex between CDK12-cyclin K and the CUL4 adaptor protein DDB1, bypassing the requirement for a substrate receptor and presenting cyclin K for ubiquitination and degradation. Our studies demonstrate that chemical alteration of surface-exposed moieties can confer gain-of-function glue properties to an inhibitor, and we propose this as a broader strategy through which target-binding molecules could be converted into molecular glues.


  
DNA metabarcoding reveals metacommunity dynamics in a threatened boreal wetland wilderness 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (15) : 8539-8545
作者:  Bush, Alex;  Monk, Wendy A.;  Compson, Zacchaeus G.;  Peters, Daniel L.;  Porter, Teresita M.;  Shokralla, Shadi;  Wright, Michael T. G.;  Hajibabaei, Mehrdad;  Baird, Donald J.
收藏  |  浏览/下载:16/0  |  提交时间:2020/05/13
occupancy  detectability  taxonomic resolution  stochasticity  power analysis  
Solar has greater techno-economic resource suitability than wind for replacing coal mining jobs 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (3)
作者:  Pai, Sandeep;  Zerriffi, Hisham;  Jewell, Jessica;  Pathak, Jaivik
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/02
energy transitions  just transitions  solar jobs  wind jobs  climate change  coal miners  
Dating the skull from Broken Hill, Zambia, and its position in human evolution 期刊论文
NATURE, 2020, 580 (7803) : 372-+
作者:  Mergner, Julia;  Frejno, Martin;  List, Markus;  Papacek, Michael;  Chen, Xia;  Chaudhary, Ajeet;  Samaras, Patroklos;  Richter, Sandra;  Shikata, Hiromasa;  Messerer, Maxim;  Lang, Daniel;  Altmann, Stefan;  Cyprys, Philipp;  Zolg, Daniel P.;  Mathieson, Toby;  Bantscheff, Marcus
收藏  |  浏览/下载:5/0  |  提交时间:2020/07/03

The cranium from Broken Hill (Kabwe) was recovered from cave deposits in 1921, during metal ore mining in what is now Zambia(1). It is one of the best-preserved skulls of a fossil hominin, and was initially designated as the type specimen of Homo rhodesiensis, but recently it has often been included in the taxon Homo heidelbergensis(2-4). However, the original site has since been completely quarried away, and-although the cranium is often estimated to be around 500 thousand years old(5-7)-its unsystematic recovery impedes its accurate dating and placement in human evolution. Here we carried out analyses directly on the skull and found a best age estimate of 299 +/- 25 thousand years (mean +/- 2s). The result suggests that later Middle Pleistocene Africa contained multiple contemporaneous hominin lineages (that is, Homo sapiens(8,9), H. heidelbergensis/H. rhodesiensis and Homo naledi(10,11)), similar to Eurasia, where Homo neanderthalensis, the Denisovans, Homo floresiensis, Homo luzonensis and perhaps also Homo heidelbergensis and Homo erectus(12) were found contemporaneously. The age estimate also raises further questions about the mode of evolution of H. sapiens in Africa and whether H. heidelbergensis/H. rhodesiensis was a direct ancestor of our species(13,14).


  
Transparency on greenhouse gas emissions from mining to enable climate change mitigation 期刊论文
NATURE GEOSCIENCE, 2020, 13 (2) : 100-+
作者:  Azadi, Mehdi;  Northey, Stephen A.;  Ali, Saleem H.;  Edraki, Mansour
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
Coherent electrical control of a single high-spin nucleus in silicon 期刊论文
NATURE, 2020, 579 (7798) : 205-+
作者:  Dedoussi, Irene C.;  Eastham, Sebastian D.;  Monier, Erwan;  Barrett, Steven R. H.
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, for example, in chemistry, medicine, materials science and mining. Nuclear spins also featured in early proposals for solid-state quantum computers(1) and demonstrations of quantum search(2) and factoring(3) algorithms. Scaling up such concepts requires controlling individual nuclei, which can be detected when coupled to an electron(4-6). However, the need to address the nuclei via oscillating magnetic fields complicates their integration in multi-spin nanoscale devices, because the field cannot be localized or screened. Control via electric fields would resolve this problem, but previous methods(7-9) relied on transducing electric signals into magnetic fields via the electron-nuclear hyperfine interaction, which severely affects nuclear coherence. Here we demonstrate the coherent quantum control of a single Sb-123 (spin-7/2) nucleus using localized electric fields produced within a silicon nanoelectronic device. The method exploits an idea proposed in 1961(10) but not previously realized experimentally with a single nucleus. Our results are quantitatively supported by a microscopic theoretical model that reveals how the purely electrical modulation of the nuclear electric quadrupole interaction results in coherent nuclear spin transitions that are uniquely addressable owing to lattice strain. The spin dephasing time, 0.1 seconds, is orders of magnitude longer than those obtained by methods that require a coupled electron spin to achieve electrical driving. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors and hybrid spin-mechanical quantum systems using all-electrical controls. Integrating electrically controllable nuclei with quantum dots(11,12) could pave the way to scalable, nuclear- and electron-spin-based quantum computers in silicon that operate without the need for oscillating magnetic fields.


  
Mining's climate accountability 期刊论文
NATURE GEOSCIENCE, 2020, 13 (2) : 97-97
作者:  [unavailable]
收藏  |  浏览/下载:5/0  |  提交时间:2020/08/18