GSTDTAP

浏览/检索结果: 共199条,第1-10条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (29) : 17049-17055
作者:  Sethi, Sarab S.;  Jones, Nick S.;  Fulcher, Ben D.;  Picinali, Lorenzo;  Clink, Dena Jane;  Klinck, Holger;  Orme, C. David L.;  Wrege, Peter H.;  Ewers, Robert M.
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/09
machine learning  acoustic  soundscape  monitoring  ecology  
Perspective: The future of liquid biopsy 期刊论文
NATURE, 2020, 579 (7800) : S9-S9
作者:  Silver, Andrew
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

The approach is starting to transform cancer diagnosis. Now the challenge is to make it a standard clinical tool, says Catherine Alix-Panabieres.


  
Combined ground and aerial measurements resolve vent-specific gas fluxes from a multi-vent volcano 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Pering, T. D.;  Liu, E. J.;  Wood, K.;  Wilkes, T. C.;  Aiuppa, A.;  Tamburello, G.;  Bitetto, M.;  Richardson, T.;  McGonigle, A. J. S.
收藏  |  浏览/下载:7/0  |  提交时间:2020/06/22
Quantifying the drivers and predictability of seasonal changes in African fire 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Yu, Yan;  Mao, Jiafu;  Thornton, Peter E.;  Notaro, Michael;  Wullschleger, Stan D.;  Shi, Xiaoying;  Hoffman, Forrest M.;  Wang, Yaoping
收藏  |  浏览/下载:11/0  |  提交时间:2020/06/16
Everyone, everywhere: the global challenge of climate change Two manifestos call for climate action on different scales - national and global 期刊论文
NATURE, 2020, 579 (7800) : 488-489
作者:  Mallapaty, Smriti
收藏  |  浏览/下载:2/0  |  提交时间:2020/07/03
Strain engineering and epitaxial stabilization of halide perovskites 期刊论文
NATURE, 2020, 577 (7789) : 209-+
作者:  Chen, Yimu;  Lei, Yusheng;  Li, Yuheng;  Yu, Yugang;  Cai, Jinze;  Chiu, Ming-Hui;  Rao, Rahul;  Gu, Yue;  Wang, Chunfeng;  Choi, Woojin;  Hu, Hongjie;  Wang, Chonghe;  Li, Yang;  Song, Jiawei;  Zhang, Jingxin;  Qi, Baiyan;  Lin, Muyang;  Zhang, Zhuorui;  Islam, Ahmad E.;  Maruyama, Benji;  Dayeh, Shadi;  Li, Lain-Jong;  Yang, Kesong;  Lo, Yu-Hwa;  Xu, Sheng
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

Strain engineering is a powerful tool with which to enhance semiconductor device performance(1,2). Halide perovskites have shown great promise in device applications owing to their remarkable electronic and optoelectronic properties(3-5). Although applying strain to halide perovskites has been frequently attempted, including using hydrostatic pressurization(6-8), electrostriction(9), annealing(10-12), van der Waals force(13), thermal expansion mismatch(14), and heat-induced substrate phase transition(15), the controllable and device-compatible strain engineering of halide perovskites by chemical epitaxy remains a challenge, owing to the absence of suitable lattice-mismatched epitaxial substrates. Here we report the strained epitaxial growth of halide perovskite single-crystal thin films on lattice-mismatched halide perovskite substrates. We investigated strain engineering of a-formamidinium lead iodide (alpha-FAPbI(3)) using both experimental techniques and theoretical calculations. By tailoring the substrate composition-and therefore its lattice parameter-a compressive strain as high as 2.4 per cent is applied to the epitaxial alpha-FAPbI(3) thin film. We demonstrate that this strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of alpha-FAPbI(3). Strained epitaxy is also shown to have a substantial stabilization effect on the alpha-FAPbI(3) phase owing to the synergistic effects of epitaxial stabilization and strain neutralization. As an example, strain engineering is applied to enhance the performance of an alpha-FAPbI(3)-based photodetector.


  
Search and rescue at sea aided by hidden flow structures 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Serra, Mattia;  Sathe, Pratik;  Rypina, Irina;  Kirincich, Anthony;  Ross, Shane D.;  Lermusiaux, Pierre;  Allen, Arthur;  Peacock, Thomas;  Haller, George
收藏  |  浏览/下载:5/0  |  提交时间:2020/06/01
Causal mechanism of injection-induced earthquakes through the M-w 5.5 Pohang earthquake case study 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Yeo, I. W.;  Brown, M. R. M.;  Ge, S.;  Lee, K. K.
收藏  |  浏览/下载:6/0  |  提交时间:2020/06/01
Molecular tuning of CO2-to-ethylene conversion 期刊论文
NATURE, 2020, 577 (7791) : 509-+
作者:  Li, Fengwang;  39;Brien, Colin P.
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

The electrocatalytic reduction of carbon dioxide, powered by renewable electricity, to produce valuable fuels and feedstocks provides a sustainable and carbon-neutral approach to the storage of energy produced by intermittent renewable sources(1). However, the highly selective generation of economically desirable products such as ethylene from the carbon dioxide reduction reaction (CO2RR) remains a challenge(2). Tuning the stabilities of intermediates to favour a desired reaction pathway can improve selectivity(3-5), and this has recently been explored for the reaction on copper by controlling morphology(6), grain boundaries(7), facets(8), oxidation state(9) and dopants(10). Unfortunately, the Faradaic efficiency for ethylene is still low in neutral media (60 per cent at a partial current density of 7 milliamperes per square centimetre in the best catalyst reported so far(9)), resulting in a low energy efficiency. Here we present a molecular tuning strategy-the functionalization of the surface of electrocatalysts with organic molecules-that stabilizes intermediates for more selective CO2RR to ethylene. Using electrochemical, operando/in situ spectroscopic and computational studies, we investigate the influence of a library of molecules, derived by electro-dimerization of arylpyridiniums(11), adsorbed on copper. We find that the adhered molecules improve the stabilization of an '  atop-bound'  CO intermediate (that is, an intermediate bound to a single copper atom), thereby favouring further reduction to ethylene. As a result of this strategy, we report the CO2RR to ethylene with a Faradaic efficiency of 72 per cent at a partial current density of 230 milliamperes per square centimetre in a liquid-electrolyte flow cell in a neutral medium. We report stable ethylene electrosynthesis for 190 hours in a system based on a membrane-electrode assembly that provides a full-cell energy efficiency of 20 per cent. We anticipate that this may be generalized to enable molecular strategies to complement heterogeneous catalysts by stabilizing intermediates through local molecular tuning.


Electrocatalytic reduction of CO2 over copper can be made highly selective by '  tuning'  the copper surface with adsorbed organic molecules to stabilize intermediates for carbon-based fuels such as ethylene


  
Field-resolved infrared spectroscopy of biological systems 期刊论文
NATURE, 2020, 577 (7788) : 52-+
作者:  Pupeza, Ioachim;  Huber, Marinus;  Trubetskov, Michael;  Schweinberger, Wolfgang;  Hussain, Syed A.;  Hofer, Christina;  Fritsch, Kilian;  Poetzlberger, Markus;  Vamos, Lenard;  Fill, Ernst;  Amotchkina, Tatiana;  Kepesidis, Kosmas V.;  Apolonski, Alexander;  Karpowicz, Nicholas;  Pervak, Vladimir;  Pronin, Oleg;  Fleischmann, Frank;  Azzeer, Abdallah;  Zigman, Mihaela;  Krausz, Ferenc
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

The proper functioning of living systems and physiological phenotypes depends on molecular composition. Yet simultaneous quantitative detection of a wide variety of molecules remains a challenge(1-8). Here we show how broadband optical coherence opens up opportunities for fingerprinting complex molecular ensembles in their natural environment. Vibrationally excited molecules emit a coherent electric field following few-cycle infrared laser excitation(9-12), and this field is specific to the sample'  s molecular composition. Employing electro-optic sampling(10,12-15), we directly measure this global molecular fingerprint down to field strengths 10(7) times weaker than that of the excitation. This enables transillumination of intact living systems with thicknesses of the order of 0.1 millimetres, permitting broadband infrared spectroscopic probing of human cells and plant leaves. In a proof-of-concept analysis of human blood serum, temporal isolation of the infrared electric-field fingerprint from its excitation along with its sampling with attosecond timing precision results in detection sensitivity of submicrograms per millilitre of blood serum and a detectable dynamic range of molecular concentration exceeding 10(5). This technique promises improved molecular sensitivity and molecular coverage for probing complex, real-world biological and medical settings.