Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1073/pnas.2004702117 |
Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set | |
Sethi, Sarab S.1,2,3; Jones, Nick S.1; Fulcher, Ben D.4; Picinali, Lorenzo2; Clink, Dena Jane5; Klinck, Holger5; Orme, C. David L.3; Wrege, Peter H.5; Ewers, Robert M.3 | |
2020-07-07 | |
发表期刊 | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
![]() |
ISSN | 0027-8424 |
出版年 | 2020 |
卷号 | 117期号:29页码:17049-17055 |
文章类型 | Article |
语种 | 英语 |
国家 | England; Australia; USA |
英文摘要 | Natural habitats are being impacted by human pressures at an alarming rate. Monitoring these ecosystem-level changes often re-quires labor-intensive surveys that are unable to detect rapid or unanticipated environmental changes. Here we have developed a generalizable, data-driven solution to this challenge using eco-acoustic data. We exploited a convolutional neural network to em-bed soundscapes from a variety of ecosystems into a common acoustic space. In both supervised and unsupervised modes, this allowed us to accurately quantify variation in habitat quality across space and in biodiversity through time. On the scale of seconds, we learned a typical soundscape model that allowed automatic identi-fication of anomalous sounds in playback experiments, providing a potential route for real-time automated detection of irregular envi-ronmental behavior including illegal logging and hunting. Our highly generalizable approach, and the common set of features, will enable scientists to unlock previously hidden insights from acoustic data and offers promise as a backbone technology for global col-laborative autonomous ecosystem monitoring efforts. |
英文关键词 | machine learning acoustic soundscape monitoring ecology |
领域 | 地球科学 ; 气候变化 ; 资源环境 |
收录类别 | SCI-E |
WOS记录号 | WOS:000553292900023 |
WOS关键词 | BIG DATA ; INDEXES ; ECOLOGY ; ACCURACY |
WOS类目 | Multidisciplinary Sciences |
WOS研究方向 | Science & Technology - Other Topics |
URL | 查看原文 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/282733 |
专题 | 资源环境科学 |
作者单位 | 1.Imperial Coll London, Dept Math, London SW7 2AZ, England; 2.Imperial Coll London, Dyson Sch Design Engn, London SW7 2AZ, England; 3.Imperial Coll London, Dept Life Sci, Ascot SL5 7PY, Berks, England; 4.Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia; 5.Cornell Univ, Ctr Conservat Bioacoust, Cornell Lab Ornithol, Ithaca, NY 14850 USA |
推荐引用方式 GB/T 7714 | Sethi, Sarab S.,Jones, Nick S.,Fulcher, Ben D.,et al. Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set[J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,2020,117(29):17049-17055. |
APA | Sethi, Sarab S..,Jones, Nick S..,Fulcher, Ben D..,Picinali, Lorenzo.,Clink, Dena Jane.,...&Ewers, Robert M..(2020).Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set.PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,117(29),17049-17055. |
MLA | Sethi, Sarab S.,et al."Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set".PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 117.29(2020):17049-17055. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论