GSTDTAP

浏览/检索结果: 共27条,第1-10条 帮助

限定条件            
已选(0)清除 条数/页:   排序方式:
Experimental evidence of dispersal of invasive cyprinid inside waterfowl 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (27) : 15397-15399
作者:  Lovas-Kiss, Adam;  Vincze, Orsolya;  Loki, Viktor;  Paller-Kapusi, Felicia;  Halasi-Kovacs, Bela;  Kovacs, Gyula;  Green, Andy J.;  Lukacs, Balazs Andras
收藏  |  浏览/下载:7/0  |  提交时间:2020/06/29
long-distance dispersal  freshwater  fish distribution  invasion  endozoochory  
A developmental landscape of 3D-cultured human pre-gastrulation embryos 期刊论文
NATURE, 2020, 577 (7791) : 537-+
作者:  Xiang, Lifeng;  Yin, Yu;  Zheng, Yun;  Ma, Yanping;  Li, Yonggang;  Zhao, Zhigang;  Guo, Junqiang;  Ai, Zongyong;  Niu, Yuyu;  Duan, Kui;  He, Jingjing;  Ren, Shuchao;  Wu, Dan;  Bai, Yun;  Shang, Zhouchun;  Dai, Xi;  Ji, Weizhi;  Li, Tianqing
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

Our understanding of how human embryos develop before gastrulation, including spatial self-organization and cell type ontogeny, remains limited by available two-dimensional technological platforms(1,2) that do not recapitulate the in vivo conditions(3-5). Here we report a three-dimensional (3D) blastocyst-culture system that enables human blastocyst development up to the primitive streak anlage stage. These 3D embryos mimic developmental landmarks and 3D architectures in vivo, including the embryonic disc, amnion, basement membrane, primary and primate unique secondary yolk sac, formation of anterior-posterior polarity and primitive streak anlage. Using single-cell transcriptome profiling, we delineate ontology and regulatory networks that underlie the segregation of epiblast, primitive endoderm and trophoblast. Compared with epiblasts, the amniotic epithelium shows unique and characteristic phenotypes. After implantation, specific pathways and transcription factors trigger the differentiation of cytotrophoblasts, extravillous cytotrophoblasts and syncytiotrophoblasts. Epiblasts undergo a transition to pluripotency upon implantation, and the transcriptome of these cells is maintained until the generation of the primitive streak anlage. These developmental processes are driven by different pluripotency factors. Together, findings from our 3D-culture approach help to determine the molecular and morphogenetic developmental landscape that occurs during human embryogenesis.


A 3D culture system to model human embryonic development, together with single-cell transcriptome profiling, provides insights into the molecular developmental landscape during human post-implantation embryogenesis.


  
Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis 期刊论文
NATURE, 2020, 577 (7789) : 260-+
作者:  Kakiuchi, Nobuyuki;  Yoshida, Kenichi;  Uchino, Motoi;  Kihara, Takako;  Akaki, Kotaro;  Inoue, Yoshikage;  Kawada, Kenji;  Nagayama, Satoshi;  Yokoyama, Akira;  Yamamoto, Shuji;  Matsuura, Minoru;  Horimatsu, Takahiro;  Hirano, Tomonori;  Goto, Norihiro;  Takeuchi, Yasuhide;  Ochi, Yotaro;  Shiozawa, Yusuke;  Kogure, Yasunori;  Watatani, Yosaku;  Fujii, Yoichi;  Kim, Soo Ki;  Kon, Ayana;  Kataoka, Keisuke;  Yoshizato, Tetsuichi;  Nakagawa, Masahiro M.;  Yoda, Akinori;  Nanya, Yasuhito;  Makishima, Hideki;  Shiraishi, Yuichi;  Chiba, Kenichi;  Tanaka, Hiroko;  Sanada, Masashi;  Sugihara, Eiji;  Sato, Taka-aki;  Maruyama, Takashi;  Miyoshi, Hiroyuki;  Taketo, Makoto Mark;  Oishi, Jun;  Inagaki, Ryosaku;  Ueda, Yutaka;  Okamoto, Shinya;  Okajima, Hideaki;  Sakai, Yoshiharu;  Sakurai, Takaki;  Haga, Hironori;  Hirota, Seiichi;  Ikeuchi, Hiroki;  Nakase, Hiroshi;  Marusawa, Hiroyuki;  Chiba, Tsutomu;  Takeuchi, Osamu;  Miyano, Satoru;  Seno, Hiroshi;  Ogawa, Seishi
收藏  |  浏览/下载:78/0  |  提交时间:2020/07/03

Chronic inflammation is accompanied by recurring cycles of tissue destruction and repair and is associated with an increased risk of cancer(1-3). However, how such cycles affect the clonal composition of tissues, particularly in terms of cancer development, remains unknown. Here we show that in patients with ulcerative colitis, the inflamed intestine undergoes widespread remodelling by pervasive clones, many of which are positively selected by acquiring mutations that commonly involve the NFKBIZ, TRAF3IP2, ZC3H12A, PIGR and HNRNPF genes and are implicated in the downregulation of IL-17 and other pro-inflammatory signals. Mutational profiles vary substantially between colitis-associated cancer and non-dysplastic tissues in ulcerative colitis, which indicates that there are distinct mechanisms of positive selection in both tissues. In particular, mutations in NFKBIZ are highly prevalent in the epithelium of patients with ulcerative colitis but rarely found in both sporadic and colitis-associated cancer, indicating that NFKBIZ-mutant cells are selected against during colorectal carcinogenesis. In further support of this negative selection, we found that tumour formation was significantly attenuated in Nfkbiz-mutant mice and cell competition was compromised by disruption of NFKBIZ in human colorectal cancer cells. Our results highlight common and discrete mechanisms of clonal selection in inflammatory tissues, which reveal unexpected cancer vulnerabilities that could potentially be exploited for therapeutics in colorectal cancer.


  
On the influence of density and morphology on the Urban Heat Island intensity 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Li, Yunfei;  Schubert, Sebastian;  Kropp, Juergen P.;  Rybski, Diego
收藏  |  浏览/下载:6/0  |  提交时间:2020/06/01
Turning connective tissue into neurons for 10 years 期刊论文
NATURE, 2020, 578 (7796) : 522-524
作者:  Acquaviva, Laurent;  Boekhout, Michiel;  Karasu, Mehmet E.;  Brick, Kevin;  Pratto, Florencia;  Li, Tao;  van Overbeek, Megan;  Kauppi, Liisa;  Camerini-Otero, R. Daniel;  Jasin, Maria;  Keeney, Scott
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

An historic breakthrough that altered our understanding of cell fate.


A method for directly converting connective-tissue cells into neurons opened up a new branch of research into cell-based therapies and called into question long-held beliefs about how development affects a cell'  s identity.


  
Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Gao, Jing;  39;Neill, Brian C.
收藏  |  浏览/下载:9/0  |  提交时间:2020/05/13
Future of the human climate niche 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (21) : 11350-11355
作者:  Xu, Chi;  Kohler, Timothy A.;  Lenton, Timothy M.;  Svenning, Jens-Christian;  Scheffer, Marten
收藏  |  浏览/下载:9/0  |  提交时间:2020/05/13
climate  migration  societies  
A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1 期刊论文
NATURE, 2020, 577 (7788) : 109-+
作者:  Tao, Panfeng;  Sun, Jinqiao;  Wu, Zheming;  Wang, Shihao;  Wang, Jun;  Li, Wanjin;  Pan, Heling;  Bai, Renkui;  Zhang, Jiahui;  Wang, Ying;  Lee, Pui Y.;  Ying, Wenjing;  Zhou, Qinhua;  Hou, Jia;  Wang, Wenjie;  Sun, Bijun;  Yang, Mi;  Liu, Danru;  Fang, Ran;  Han, Huan;  Yang, Zhaohui;  Huang, Xin;  Li, Haibo;  Deuitch, Natalie;  Zhang, Yuan;  Dissanayake, Dilan;  Haude, Katrina;  McWalter, Kirsty;  Roadhouse, Chelsea;  MacKenzie, Jennifer J.;  Laxer, Ronald M.;  Aksentijevich, Ivona;  Yu, Xiaomin;  Wang, Xiaochuan;  Yuan, Junying;  Zhou, Qing
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03

Activation of RIPK1 controls TNF-mediated apoptosis, necroptosis and inflammatory pathways(1). Cleavage of human and mouse RIPK1 after residues D324 and D325, respectively, by caspase-8 separates the RIPK1 kinase domain from the intermediate and death domains. The D325A mutation in mouse RIPK1 leads to embryonic lethality during mouse development(2,3). However, the functional importance of blocking caspase-8-mediated cleavage of RIPK1 on RIPK1 activation in humans is unknown. Here we identify two families with variants in RIPK1 (D324V and D324H) that lead to distinct symptoms of recurrent fevers and lymphadenopathy in an autosomaldominant manner. Impaired cleavage of RIPK1 D324 variants by caspase-8 sensitized patients'  peripheral blood mononuclear cells to RIPK1 activation, apoptosis and necroptosis induced by TNF. The patients showed strong RIPK1-dependent activation of inflammatory signalling pathways and overproduction of inflammatory cytokines and chemokines compared with unaffected controls. Furthermore, we show that expression of the RIPK1 mutants D325V or D325H in mouse embryonic fibroblasts confers not only increased sensitivity to RIPK1 activation-mediated apoptosis and necroptosis, but also induction of pro-inflammatory cytokines such as IL-6 and TNF. By contrast, patient-derived fibroblasts showed reduced expression of RIPK1 and downregulated production of reactive oxygen species, resulting in resistance to necroptosis and ferroptosis. Together, these data suggest that human non-cleavable RIPK1 variants promote activation of RIPK1, and lead to an autoinflammatory disease characterized by hypersensitivity to apoptosis and necroptosis and increased inflammatory response in peripheral blood mononuclear cells, as well as a compensatory mechanism to protect against several pro-death stimuli in fibroblasts.


  
Impaired cell fate through gain-of-function mutations in a chromatin reader 期刊论文
NATURE, 2020, 577 (7788) : 121-+
作者:  Wan, Liling;  Chong, Shasha;  Xuan, Fan;  Liang, Angela;  Cui, Xiaodong;  Gates, Leah;  Carroll, Thomas S.;  Li, Yuanyuan;  Feng, Lijuan;  Chen, Guochao;  Wang, Shu-Ping;  Ortiz, Michael V.;  Daley, Sara K.;  Wang, Xiaolu;  Xuan, Hongwen;  Kentsis, Alex;  Muir, Tom W.;  Roeder, Robert G.;  Li, Haitao;  Li, Wei;  Tjian, Robert;  Wen, Hong;  Allis, C. David
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Modifications of histone proteins have essential roles in normal development and human disease. Recognition of modified histones by '  reader'  proteins is a key mechanism that mediates the function of histone modifications, but how the dysregulation of these readers might contribute to disease remains poorly understood. We previously identified the ENL protein as a reader of histone acetylation via its YEATS domain, linking it to the expression of cancer-driving genes in acute leukaemia1. Recurrent hotspot mutations have been found in the ENL YEATS domain in Wilms tumour2,3, the most common type of paediatric kidney cancer. Here we show, using human and mouse cells, that these mutations impair cell-fate regulation by conferring gain-of-function in chromatin recruitment and transcriptional control. ENL mutants induce gene-expression changes that favour a premalignant cell fate, and, in an assay for nephrogenesis using murine cells, result in undifferentiated structures resembling those observed in human Wilms tumour. Mechanistically, although bound to largely similar genomic loci as the wild-type protein, ENL mutants exhibit increased occupancy at a subset of targets, leading to a marked increase in the recruitment and activity of transcription elongation machinery that enforces active transcription from target loci. Furthermore, ectopically expressed ENL mutants exhibit greater self-association and form discrete and dynamic nuclear puncta that are characteristic of biomolecular hubs consisting of local high concentrations of regulatory factors. Such mutation-driven ENL self-association is functionally linked to enhanced chromatin occupancy and gene activation. Collectively, our findings show that hotspot mutations in a chromatinreader domain drive self-reinforced recruitment, derailing normal cell-fate control during development and leading to an oncogenic outcome.


  
Structure of nevanimibe-bound tetrameric human ACAT1 期刊论文
NATURE, 2020, 581 (7808) : 339-U214
作者:  Ma, Xiyu;  Claus, Lucas A. N.;  Leslie, Michelle E.;  Tao, Kai;  Wu, Zhiping;  Liu, Jun;  Yu, Xiao;  Li, Bo;  Zhou, Jinggeng;  Savatin, Daniel V.;  Peng, Junmin;  Tyler, Brett M.;  Heese, Antje;  Russinova, Eugenia;  He, Ping;  Shan, Libo
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

The structure of human ACAT1 in complex with the inhibitor nevanimibe is resolved by cryo-electron microscopy.


Cholesterol is an essential component of mammalian cell membranes, constituting up to 50% of plasma membrane lipids. By contrast, it accounts for only 5% of lipids in the endoplasmic reticulum (ER)(1). The ER enzyme sterol O-acyltransferase 1 (also named acyl-coenzyme A:cholesterol acyltransferase, ACAT1) transfers a long-chain fatty acid to cholesterol to form cholesteryl esters that coalesce into cytosolic lipid droplets. Under conditions of cholesterol overload, ACAT1 maintains the low cholesterol concentration of the ER and thereby has an essential role in cholesterol homeostasis(2,3). ACAT1 has also been implicated in Alzheimer'  s disease(4), atherosclerosis(5) and cancers(6). Here we report a cryo-electron microscopy structure of human ACAT1 in complex with nevanimibe(7), an inhibitor that is in clinical trials for the treatment of congenital adrenal hyperplasia. The ACAT1 holoenzyme is a tetramer that consists of two homodimers. Each monomer contains nine transmembrane helices (TMs), six of which (TM4-TM9) form a cavity that accommodates nevanimibe and an endogenous acyl-coenzyme A. This cavity also contains a histidine that has previously been identified as essential for catalytic activity(8). Our structural data and biochemical analyses provide a physical model to explain the process of cholesterol esterification, as well as details of the interaction between nevanimibe and ACAT1, which may help to accelerate the development of ACAT1 inhibitors to treat related diseases.