GSTDTAP
项目编号1658311
Collaborative Research: Iron Incorporation into Biogenic Silica
Peter Morton
主持机构Florida State University
项目开始年2017
2017-03-01
项目结束日期2020-02-29
资助机构US-NSF
项目类别Standard Grant
项目经费146938(USD)
国家美国
语种英语
英文摘要Ocean research over the last several decades has increasingly shown the great importance of iron chemistry on marine biological processes. In certain areas of the ocean where iron is scarce, it can limit biological growth even though other essential nutrients like nitrogen and phosphorus are abundant. Consequently, to fully understand and quantify biological productivity in the ocean, a complete knowledge of all sources and sinks for iron is essential. The researchers funded for this project have already generated exciting preliminary data that suggest a potentially large, yet, unquantified pathway for iron removal. Diatoms, phytoplankton with shells made of silica, are shown to incorporate traces of iron into their shells, making it unavailable for rapid recycling or use by marine organisms in surface waters. Given the great abundance of diatoms in many parts of the ocean, this could represent a major, unstudied removal mechanism that regulates the concentration of iron in seawater. This research could transform current understanding of how iron is removed from the ocean, and it will impact understanding of both the chemical and biological processes involving iron in seawater. The investigator also plans outreach in K-12 schools by providing educational courses for Earth Science teachers and will support graduate student training in advanced chemical analysis and oceanography.

High-resolution synchrotron-based chemical techniques will allow determination of the concentration and oxidation state of iron bound within diatom frustules. This analytical advance has created the ability for unique evaluation of iron sequestration into biogenic silica as a major pathway for iron removal from the ocean. Samples from the Pacific sector of the Southern Ocean have been collected in a previous CLIVAR field campaign and a subset of these are available for new synchrotron analysis of iron (Fe) with Near Edge X-ray Fluorescence Spectroscopy (Fe-NEXFS) and submicron scale X-ray fluorescence mapping, as well as a variety of other chemical characterizations. With these methods, the project will determine the importance of iron sequestered into biogenic silica as a new and unquantified loss term in the oceanic Fe cycle and examine the changing chemical complexes of iron during vertical transport of silica particles through the water column.
来源学科分类Geosciences - Ocean Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/70829
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Peter Morton.Collaborative Research: Iron Incorporation into Biogenic Silica.2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Peter Morton]的文章
百度学术
百度学术中相似的文章
[Peter Morton]的文章
必应学术
必应学术中相似的文章
[Peter Morton]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。