GSTDTAP
项目编号1622377
Collaborative Research: SHINE: Characteristics of Solar Energetic Particle Events Resulting from Filament Eruptions
Neeharika Thakur
主持机构Catholic University of America
项目开始年2016
2016-07-15
项目结束日期2019-06-30
资助机构US-NSF
项目类别Continuing grant
项目经费29851(USD)
国家美国
语种英语
英文摘要Understanding the details of solar energetic particle (SEP) acceleration is critical for accurate predictions of space weather and potential impacts on sensitive space-based assets. This 3-year SHINE project is aimed at studying SEP events associated with filament eruptions on the Sun. The goal is to isolate and investigate SEPs accelerated at CME-driven shocks with minimal flare material contributions. The work expands on other researchers' recent results by using more instruments to cover a broader energy range and extend the analysis. The methodology involves spectral and elemental composition data analysis techniques that are well established. The dissemination of the scientific results will be made broadly to the scientific and space weather prediction communities through published articles, scientific talks, and personal communications. In addition, project results and relevant data sets will be made available via the public web pages of the ACE and STEREO Science Centers. The three project teams have excellent track record of publications, participating (often in leadership roles) in various workshops (e.g., SHINE), and attending scientific conferences. Both the team leader and a Co-PIs are under-represented minorities and funding is included for the involvement of an undergraduate student. The project will promote strong international collaborations for the benefit of advancing space weather research both in the USA and worldwide.

The research plan of this 3-year SHINE project includes four main tasks. The first task is to examine the characteristics of heavy ions for previously identified events. The spectral shape variation as a function of particle species reveals characteristics of the accelerating shock, while the composition provides important clues regarding the SEP seed population. The second task is to study smaller SEP events associated with filament eruptions by using the more sensitive SEP sensors onboard ACE and STEREO. The inclusion of STEREO data alone has the potential to increase the number of events suitable for study and, in combination with near-Earth spacecraft, allows the examination of SEP characteristics as a function of longitude. The third task is to define stronger constrains on the primary acceleration region by combining calculations of the particle-release times, for both for single-and multiple-spacecraft events, with timing of the corresponding solar signatures. The fourth task is to study in detail similar filament eruption events without associated SEP events in order to identify specific features that are key to SEP generation. The project is directly relevant to the NSF's SHINE program, because it will provide important knowledge about the acceleration and transport of SEPs during solar eruptive events. Such knowledge is critical for accurate modeling and prediction of space weather conditions from the solar surface to the Earth and beyond. The research and EPO agenda of this project supports the Strategic Goals of the AGS Division in discovery, learning, diversity, and interdisciplinary research.
来源学科分类Geosciences - Atmospheric and Geospace Sciences
文献类型项目
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/69805
专题环境与发展全球科技态势
推荐引用方式
GB/T 7714
Neeharika Thakur.Collaborative Research: SHINE: Characteristics of Solar Energetic Particle Events Resulting from Filament Eruptions.2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Neeharika Thakur]的文章
百度学术
百度学术中相似的文章
[Neeharika Thakur]的文章
必应学术
必应学术中相似的文章
[Neeharika Thakur]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。