GSTDTAP

浏览/检索结果: 共23条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
人类活动持续影响地球深层地下流体流动 快报文章
地球科学快报,2024年第9期
作者:  王晓晨
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:372/0  |  提交时间:2024/05/10
Human activity  Fluid Fluxes  
人类活动引起全球河流悬浮沉积物通量迅速变化 快报文章
资源环境快报,2022年第13期
作者:  吴秀平
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:677/1  |  提交时间:2022/07/16
River  human activity  suspended sediment  
Impaired cell fate through gain-of-function mutations in a chromatin reader 期刊论文
NATURE, 2020, 577 (7788) : 121-+
作者:  Wan, Liling;  Chong, Shasha;  Xuan, Fan;  Liang, Angela;  Cui, Xiaodong;  Gates, Leah;  Carroll, Thomas S.;  Li, Yuanyuan;  Feng, Lijuan;  Chen, Guochao;  Wang, Shu-Ping;  Ortiz, Michael V.;  Daley, Sara K.;  Wang, Xiaolu;  Xuan, Hongwen;  Kentsis, Alex;  Muir, Tom W.;  Roeder, Robert G.;  Li, Haitao;  Li, Wei;  Tjian, Robert;  Wen, Hong;  Allis, C. David
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Modifications of histone proteins have essential roles in normal development and human disease. Recognition of modified histones by '  reader'  proteins is a key mechanism that mediates the function of histone modifications, but how the dysregulation of these readers might contribute to disease remains poorly understood. We previously identified the ENL protein as a reader of histone acetylation via its YEATS domain, linking it to the expression of cancer-driving genes in acute leukaemia1. Recurrent hotspot mutations have been found in the ENL YEATS domain in Wilms tumour2,3, the most common type of paediatric kidney cancer. Here we show, using human and mouse cells, that these mutations impair cell-fate regulation by conferring gain-of-function in chromatin recruitment and transcriptional control. ENL mutants induce gene-expression changes that favour a premalignant cell fate, and, in an assay for nephrogenesis using murine cells, result in undifferentiated structures resembling those observed in human Wilms tumour. Mechanistically, although bound to largely similar genomic loci as the wild-type protein, ENL mutants exhibit increased occupancy at a subset of targets, leading to a marked increase in the recruitment and activity of transcription elongation machinery that enforces active transcription from target loci. Furthermore, ectopically expressed ENL mutants exhibit greater self-association and form discrete and dynamic nuclear puncta that are characteristic of biomolecular hubs consisting of local high concentrations of regulatory factors. Such mutation-driven ENL self-association is functionally linked to enhanced chromatin occupancy and gene activation. Collectively, our findings show that hotspot mutations in a chromatinreader domain drive self-reinforced recruitment, derailing normal cell-fate control during development and leading to an oncogenic outcome.


  
HBO1 is required for the maintenance of leukaemia stem cells 期刊论文
NATURE, 2020, 577 (7789) : 266-+
作者:  MacPherson, Laura;  Anokye, Juliana;  Yeung, Miriam M.;  Lam, Enid Y. N.;  Chan, Yih-Chih;  Weng, Chen-Fang;  Yeh, Paul;  Knezevic, Kathy;  Butler, Miriam S.;  Hoegl, Annabelle;  Chan, Kah-Lok;  Burr, Marian L.;  Gearing, Linden J.;  Willson, Tracy;  Liu, Joy;  Choi, Jarny;  Yang, Yuqing;  Bilardi, Rebecca A.;  Falk, Hendrik;  Nghi Nguyen;  Stupple, Paul A.;  Peat, Thomas S.;  Zhang, Ming;  de Silva, Melanie;  Carrasco-Pozo, Catalina;  Avery, Vicky M.;  Khoo, Poh Sim;  Dolezal, Olan;  Dennis, Matthew L.;  Nuttall, Stewart;  Surjadi, Regina;  Newman, Janet;  Ren, Bin;  Leaver, David J.;  Sun, Yuxin;  Baell, Jonathan B.;  Dovey, Oliver;  Vassiliou, George S.;  Grebien, Florian;  Dawson, Sarah-Jane;  Street, Ian P.;  Monahan, Brendon J.;  Burns, Christopher J.;  Choudhary, Chunaram;  Blewitt, Marnie E.;  Voss, Anne K.;  Thomas, Tim;  Dawson, Mark A.
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)(1). Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings.


  
Structure of nevanimibe-bound tetrameric human ACAT1 期刊论文
NATURE, 2020, 581 (7808) : 339-U214
作者:  Ma, Xiyu;  Claus, Lucas A. N.;  Leslie, Michelle E.;  Tao, Kai;  Wu, Zhiping;  Liu, Jun;  Yu, Xiao;  Li, Bo;  Zhou, Jinggeng;  Savatin, Daniel V.;  Peng, Junmin;  Tyler, Brett M.;  Heese, Antje;  Russinova, Eugenia;  He, Ping;  Shan, Libo
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

The structure of human ACAT1 in complex with the inhibitor nevanimibe is resolved by cryo-electron microscopy.


Cholesterol is an essential component of mammalian cell membranes, constituting up to 50% of plasma membrane lipids. By contrast, it accounts for only 5% of lipids in the endoplasmic reticulum (ER)(1). The ER enzyme sterol O-acyltransferase 1 (also named acyl-coenzyme A:cholesterol acyltransferase, ACAT1) transfers a long-chain fatty acid to cholesterol to form cholesteryl esters that coalesce into cytosolic lipid droplets. Under conditions of cholesterol overload, ACAT1 maintains the low cholesterol concentration of the ER and thereby has an essential role in cholesterol homeostasis(2,3). ACAT1 has also been implicated in Alzheimer'  s disease(4), atherosclerosis(5) and cancers(6). Here we report a cryo-electron microscopy structure of human ACAT1 in complex with nevanimibe(7), an inhibitor that is in clinical trials for the treatment of congenital adrenal hyperplasia. The ACAT1 holoenzyme is a tetramer that consists of two homodimers. Each monomer contains nine transmembrane helices (TMs), six of which (TM4-TM9) form a cavity that accommodates nevanimibe and an endogenous acyl-coenzyme A. This cavity also contains a histidine that has previously been identified as essential for catalytic activity(8). Our structural data and biochemical analyses provide a physical model to explain the process of cholesterol esterification, as well as details of the interaction between nevanimibe and ACAT1, which may help to accelerate the development of ACAT1 inhibitors to treat related diseases.


  
Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex 期刊论文
NATURE, 2020
作者:  Kalaany, Nada Y.;  Sabatini, David M.
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/03

Mitochondria take up Ca2+ through the mitochondrial calcium uniporter complex to regulate energy production, cytosolic Ca2+ signalling and cell death(1,2). In mammals, the uniporter complex (uniplex) contains four core components: the pore-forming MCU protein, the gatekeepers MICU1 and MICU2, and an auxiliary subunit, EMRE, essential for Ca2+ transport(3-8). To prevent detrimental Ca2+ overload, the activity of MCU must be tightly regulated by MICUs, which sense changes in cytosolic Ca2+ concentrations to switch MCU on and off(9,10). Here we report cryo-electron microscopic structures of the human mitochondrial calcium uniporter holocomplex in inhibited and Ca2+-activated states. These structures define the architecture of this multicomponent Ca2+-uptake machinery and reveal the gating mechanism by which MICUs control uniporter activity. Our work provides a framework for understanding regulated Ca2+ uptake in mitochondria, and could suggest ways of modulating uniporter activity to treat diseases related to mitochondrial Ca2+ overload.


Cryo-electron microscopy reveals the structures of the mitochondrial calcium uniporter holocomplex in low- and high-calcium conditions, showing the gating mechanism that underlies uniporter activation in response to intracellular calcium signals.


  
Structure and mechanism of human diacylglycerol O-acyltransferase 1 期刊论文
NATURE, 2020, 581 (7808) : 329-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

The structure of human diacylglycerol O-acyltransferase 1, a membrane protein that synthesizes triacylglycerides, is solved with cryo-electron microscopy, providing insight into its function and mechanism of enzymatic activity.


Diacylglycerol O-acyltransferase 1 (DGAT1) synthesizes triacylglycerides and is required for dietary fat absorption and fat storage in humans(1). DGAT1 belongs to the membrane-bound O-acyltransferase (MBOAT) superfamily, members of which are found in all kingdoms of life and are involved in the acylation of lipids and proteins(2,3). How human DGAT1 and other mammalian members of the MBOAT family recognize their substrates and catalyse their reactions is unknown. The absence of three-dimensional structures also hampers rational targeting of DGAT1 for therapeutic purposes. Here we present the cryo-electron microscopy structure of human DGAT1 in complex with an oleoyl-CoA substrate. Each DGAT1 protomer has nine transmembrane helices, eight of which form a conserved structural fold that we name the MBOAT fold. The MBOAT fold in DGAT1 forms a hollow chamber in the membrane that encloses highly conserved catalytic residues. The chamber has separate entrances for each of the two substrates, fatty acyl-CoA and diacylglycerol. DGAT1 can exist as either a homodimer or a homotetramer and the two forms have similar enzymatic activity. The N terminus of DGAT1 interacts with the neighbouring protomer and these interactions are required for enzymatic activity.


  
APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline 期刊论文
NATURE, 2020, 581 (7806) : 70-+
作者:  Doherty, Tiarnan A. S.;  Winchester, Andrew J.;  Macpherson, Stuart;  Johnstone, Duncan N.;  Pareek, Vivek;  Tennyson, Elizabeth M.;  Kosar, Sofiia;  Kosasih, Felix U.;  Anaya, Miguel;  Abdi-Jalebi, Mojtaba;  Andaji-Garmaroudi, Zahra;  Wong, E. Laine;  Madeo, Julien;  Chiang, Yu-Hsien;  Park, Ji-Sang;  Jung, Young-Kwang;  Petoukhoff, Christopher E.;  Divitini, Giorgio;  Man, Michael K. L.;  Ducati, Caterina;  Walsh, Aron;  Midgley, Paul A.;  Dani, Keshav M.;  Stranks, Samuel D.
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

Breakdown of the blood-brain barrier in individuals carrying the epsilon 4 allele of the APOE gene, but not the epsilon 3 allele, increases with and predicts cognitive impairment and is independent of amyloid beta or tau pathology.


Vascular contributions to dementia and Alzheimer'  s disease are increasingly recognized(1-6). Recent studies have suggested that breakdown of the blood-brain barrier (BBB) is an early biomarker of human cognitive dysfunction(7), including the early clinical stages of Alzheimer'  s disease(5,8-10). The E4 variant of apolipoprotein E (APOE4), the main susceptibility gene for Alzheimer'  s disease(11-14), leads to accelerated breakdown of the BBB and degeneration of brain capillary pericytes(15-19), which maintain BBB integrity(20-22). It is unclear, however, whether the cerebrovascular effects of APOE4 contribute to cognitive impairment. Here we show that individuals bearing APOE4 (with the epsilon 3/epsilon 4 or epsilon 4/epsilon 4 alleles) are distinguished from those without APOE4 (epsilon 3/epsilon 3) by breakdown of the BBB in the hippocampus and medial temporal lobe. This finding is apparent in cognitively unimpaired APOE4 carriers and more severe in those with cognitive impairment, but is not related to amyloid-beta or tau pathology measured in cerebrospinal fluid or by positron emission tomography(23). High baseline levels of the BBB pericyte injury biomarker soluble PDGFR beta(7,8) in the cerebrospinal fluid predicted future cognitive decline in APOE4 carriers but not in non-carriers, even after controlling for amyloid-beta and tau status, and were correlated with increased activity of the BBB-degrading cyclophilin A-matrix metalloproteinase-9 pathway(19) in cerebrospinal fluid. Our findings suggest that breakdown of the BBB contributes to APOE4-associated cognitive decline independently of Alzheimer'  s disease pathology, and might be a therapeutic target in APOE4 carriers.


  
Securin-independent regulation of separase by checkpoint-induced shugoshin-MAD2 期刊论文
NATURE, 2020, 580 (7804) : 536-+
作者:  Redhai, Siamak;  Pilgrim, Clare;  Gaspar, Pedro;  van Giesen, Lena;  Lopes, Tatiana;  Riabinina, Olena;  Grenier, Theodore;  Milona, Alexandra;  Chanana, Bhavna;  Swadling, Jacob B.;  Wang, Yi-Fang;  Dahalan, Farah;  Yuan, Michaela;  Wilsch-Brauninger, Michaela;  Lin, Wei-hsiang;  Dennison, Nathan;  Capriotti, Paolo;  Lawniczak, Mara K. N.;  Baines, Richard A.;  Warnecke, Tobias;  Windbichler, Nikolai;  Leulier, Francois;  Bellono, Nicholas W.;  Miguel-Aliaga, Irene
收藏  |  浏览/下载:32/0  |  提交时间:2020/07/03

Shugoshin and MAD2 regulate separase-mediated chromosome separation during mitosis, in parallel to a previously identified mechanism involving the anaphase inhibitor securin.


Separation of eukaryotic sister chromatids during the cell cycle is timed by the spindle assembly checkpoint (SAC) and ultimately triggered when separase cleaves cohesion-mediating cohesin(1-3). Silencing of the SAC during metaphase activates the ubiquitin ligase APC/C (anaphase-promoting complex, also known as the cyclosome) and results in the proteasomal destruction of the separase inhibitor securin(1). In the absence of securin, mammalian chromosomes still segregate on schedule, but it is unclear how separase is regulated under these conditions(4,5). Here we show that human shugoshin 2 (SGO2), an essential protector of meiotic cohesin with unknown functions in the soma(6,7), is turned into a separase inhibitor upon association with SAC-activated MAD2. SGO2-MAD2 can functionally replace securin and sequesters most separase in securin-knockout cells. Acute loss of securin and SGO2, but not of either protein individually, resulted in separase deregulation associated with premature cohesin cleavage and cytotoxicity. Similar to securin(8,9), SGO2 is a competitive inhibitor that uses a pseudo-substrate sequence to block the active site of separase. APC/C-dependent ubiquitylation and action of the AAA-ATPase TRIP13 in conjunction with the MAD2-specific adaptor p31(comet) liberate separase from SGO2-MAD2 in vitro. The latter mechanism facilitates a considerable degree of sister chromatid separation in securin-knockout cells that lack APC/C activity. Thus, our results identify an unexpected function of SGO2 in mitotically dividing cells and a mechanism of separase regulation that is independent of securin but still supervised by the SAC.


  
Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche 期刊论文
NATURE, 2020, 580 (7804) : 524-+
作者:  Poore, Gregory D.;  Kopylova, Evguenia;  Zhu, Qiyun;  Carpenter, Carolina;  Fraraccio, Serena;  Wandro, Stephen;  Kosciolek, Tomasz;  Janssen, Stefan;  Metcalf, Jessica;  Song, Se Jin;  Kanbar, Jad;  Miller-Montgomery, Sandrine;  Heaton, Robert;  Mckay, Rana;  Patel, Sandip Pravin;  Swafford, Austin D.;  Knight, Rob
收藏  |  浏览/下载:40/0  |  提交时间:2020/07/03

The initiation of an intestinal tumour is a probabilistic process that depends on the competition between mutant and normal epithelial stem cells in crypts(1). Intestinal stem cells are closely associated with a diverse but poorly characterized network of mesenchymal cell types(2,3). However, whether the physiological mesenchymal microenvironment of mutant stem cells affects tumour initiation remains unknown. Here we provide in vivo evidence that the mesenchymal niche controls tumour initiation in trans. By characterizing the heterogeneity of the intestinal mesenchyme using single-cell RNA-sequencing analysis, we identified a population of rare pericryptal Ptgs2-expressing fibroblasts that constitutively process arachidonic acid into highly labile prostaglandin E-2 (PGE(2)). Specific ablation of Ptgs2 in fibroblasts was sufficient to prevent tumour initiation in two different models of sporadic, autochthonous tumorigenesis. Mechanistically, single-cell RNA-sequencing analyses of a mesenchymal niche model showed that fibroblast-derived PGE(2) drives the expansion omicron f a population of Sca-1(+) reserve-like stem cells. These express a strong regenerative/tumorigenic program, driven by the Hippo pathway effector Yap. In vivo, Yap is indispensable for Sca-1(+) cell expansion and early tumour initiation and displays a nuclear localization in both mouse and human adenomas. Using organoid experiments, we identified a molecular mechanism whereby PGE(2) promotes Yap dephosphorylation, nuclear translocation and transcriptional activity by signalling through the receptor Ptger4. Epithelial-specific ablation of Ptger4 misdirected the regenerative reprogramming of stem cells and prevented Sca-1(+) cell expansion and sporadic tumour initiation in mutant mice, thereby demonstrating the robust paracrine control of tumour-initiating stem cells by PGE(2)-Ptger4. Analyses of patient-derived organoids established that PGE(2)-PTGER4 also regulates stem-cell function in humans. Our study demonstrates that initiation of colorectal cancer is orchestrated by the mesenchymal niche and reveals a mechanism by which rare pericryptal Ptgs2-expressing fibroblasts exert paracrine control over tumour-initiating stem cells via the druggable PGE(2)-Ptger4-Yap signalling axis.


Single-cell RNA-sequencing analysis of intestinal mesenchyme identified a population of fibroblasts that produce prostaglandin E-2, which, when disrupted, prevented initiation of intestinal tumours.