GSTDTAP

浏览/检索结果: 共2条,第1-2条 帮助

已选(0)清除 条数/页:   排序方式:
Constructing protein polyhedra via orthogonal chemical interactions 期刊论文
NATURE, 2020, 578 (7793) : 172-+
作者:  Mooley, K. P.;  Deller, A. T.;  Gottlieb, O.;  Nakar, E.;  Hallinan, G.;  Bourke, S.;  Frail, D. A.;  Horesh, A.;  Corsi, A.;  Hotokezaka, K.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Many proteins exist naturally as symmetrical homooligomers or homopolymers(1). The emergent structural and functional properties of such protein assemblies have inspired extensive efforts in biomolecular design(2-5). As synthesized by ribosomes, proteins are inherently asymmetric. Thus, they must acquire multiple surface patches that selectively associate to generate the different symmetry elements needed to form higher-order architectures(1,6)-a daunting task for protein design. Here we address this problem using an inorganic chemical approach, whereby multiple modes of protein-protein interactions and symmetry are simultaneously achieved by selective, '  one-pot'  coordination of soft and hard metal ions. We show that a monomeric protein (protomer) appropriately modified with biologically inspired hydroxamate groups and zinc-binding motifs assembles through concurrent Fe3+ and Zn2+ coordination into discrete dodecameric and hexameric cages. Our cages closely resemble natural polyhedral protein architectures(7,8) and are, to our knowledge, unique among designed systems(9-13) in that they possess tightly packed shells devoid of large apertures. At the same time, they can assemble and disassemble in response to diverse stimuli, owing to their heterobimetallic construction on minimal interprotein-bonding footprints. With stoichiometries ranging from [2 Fe:9 Zn:6 protomers] to [8 Fe:21 Zn:12 protomers], these protein cages represent some of the compositionally most complex protein assemblies-or inorganic coordination complexes-obtained by design.


An inorganic chemical approach to biomolecular design is used to generate '  cages'  that can simultaneously promote symmetry and multiple modes of protein interactions.


  
Matching scope, purpose and uses of planetary boundaries science 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (7)
作者:  Downing, Andrea S.;  Bhowmik, Avit;  Collste, David;  Cornell, Sarah E.;  Donges, Jonathan;  Fetzer, Ingo;  Haeyhae, Tiina;  Hinton, Jennifer;  Lade, Steven;  Mooij, Wolf M.
收藏  |  浏览/下载:10/0  |  提交时间:2019/11/27
planetary boundaries  resilience  global sustainability science  human dimensions  footprints approach  life cycle analysis  safe operating space