GSTDTAP

浏览/检索结果: 共32条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Large South Equatorial Current meander in the southeastern tropical Indian Ocean captured by surface drifters deployed in 2019 期刊论文
Geophysical Research Letters, 2022
作者:  Wei Wu;  Yan Du;  Yu-Kun Qian;  Ju Chen;  Xingwei Jiang
收藏  |  浏览/下载:17/0  |  提交时间:2022/02/23
Long-read sequencing revealed cooccurrence, host range, and potential mobility of antibiotic resistome in cow feces 期刊论文
Proceedings of the National Academy of Sciences, 2021
作者:  Xun Qian;  Santosh Gunturu;  Wei Sun;  James R. Cole;  Bo Norby;  Jie Gu;  James M. Tiedje
收藏  |  浏览/下载:9/0  |  提交时间:2021/06/24
Quantum walks on a programmable two-dimensional 62-qubit superconducting processor 期刊论文
Science, 2021
作者:  Ming Gong;  Shiyu Wang;  Chen Zha;  Ming-Cheng Chen;  He-Liang Huang;  Yulin Wu;  Qingling Zhu;  Youwei Zhao;  Shaowei Li;  Shaojun Guo;  Haoran Qian;  Yangsen Ye;  Fusheng Chen;  Chong Ying;  Jiale Yu;  Daojin Fan;  Dachao Wu;  Hong Su;  Hui Deng;  Hao Rong;  Kaili Zhang;  Sirui Cao;  Jin Lin;  Yu Xu;  Lihua Sun;  Cheng Guo;  Na Li;  Futian Liang;  V. M. Bastidas;  Kae Nemoto;  W. J. Munro;  Yong-Heng Huo;  Chao-Yang Lu;  Cheng-Zhi Peng;  Xiaobo Zhu;  Jian-Wei Pan
收藏  |  浏览/下载:16/0  |  提交时间:2021/06/07
Controls on surface water carbonate chemistry along North American ocean margins 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Cai, Wei-Jun;  Xu, Yuan-Yuan;  Feely, Richard A.;  Wanninkhof, Rik;  Jonsson, Bror;  Alin, Simone R.;  Barbero, Leticia;  Cross, Jessica N.;  Azetsu-Scott, Kumiko;  Fassbender, Andrea J.;  Carter, Brendan R.;  Jiang, Li-Qing;  Pepin, Pierre;  Chen, Baoshan;  Hussain, Najid;  Reimer, Janet J.;  Xue, Liang;  Salisbury, Joseph E.;  Martin Hernandez-Ayon, Jose;  Langdon, Chris;  Li, Qian;  Sutton, Adrienne J.;  Chen, Chen-Tung A.;  Gledhill, Dwight K.
收藏  |  浏览/下载:14/0  |  提交时间:2020/06/09
Millennial-scale hydroclimate control of tropical soil carbon storage 期刊论文
NATURE, 2020, 581 (7806) : 63-+
作者:  Lam, Tommy Tsan-Yuk;  Jia, Na;  Zhang, Ya-Wei;  Shum, Marcus Ho-Hin;  Jiang, Jia-Fu;  Zhu, Hua-Chen;  Tong, Yi-Gang;  Shi, Yong-Xia;  Ni, Xue-Bing;  Liao, Yun-Shi;  Li, Wen-Juan;  Jiang, Bao-Gui;  Wei, Wei;  Yuan, Ting-Ting;  Zheng, Kui;  Cui, Xiao-Ming;  Li, Jie;  Pei, Guang-Qian
收藏  |  浏览/下载:25/0  |  提交时间:2020/05/13

Over the past 18,000 years, the residence time and amount of soil carbon stored in the Ganges-Brahmaputra basin have been controlled by the intensity of Indian Summer Monsoon rainfall, with greater carbon destabilization during wetter, warmer conditions.


The storage of organic carbon in the terrestrial biosphere directly affects atmospheric concentrations of carbon dioxide over a wide range of timescales. Within the terrestrial biosphere, the magnitude of carbon storage can vary in response to environmental perturbations such as changing temperature or hydroclimate(1), potentially generating feedback on the atmospheric inventory of carbon dioxide. Although temperature controls the storage of soil organic carbon at mid and high latitudes(2,3), hydroclimate may be the dominant driver of soil carbon persistence in the tropics(4,5)  however, the sensitivity of tropical soil carbon turnover to large-scale hydroclimate variability remains poorly understood. Here we show that changes in Indian Summer Monsoon rainfall have controlled the residence time of soil carbon in the Ganges-Brahmaputra basin over the past 18,000 years. Comparison of radiocarbon ages of bulk organic carbon and terrestrial higher-plant biomarkers with co-located palaeohydrological records(6) reveals a negative relationship between monsoon rainfall and soil organic carbon stocks on a millennial timescale. Across the deglaciation period, a depletion of basin-wide soil carbon stocks was triggered by increasing rainfall and associated enhanced soil respiration rates. Our results suggest that future hydroclimate changes in tropical regions are likely to accelerate soil carbon destabilization, further increasing atmospheric carbon dioxide concentrations.


  
The water lily genome and the early evolution of flowering plants 期刊论文
NATURE, 2020, 577 (7788) : 79-+
作者:  Zhang, Liangsheng;  Chen, Fei;  Zhang, Xingtan;  Li, Zhen;  Zhao, Yiyong;  Lohaus, Rolf;  Chang, Xiaojun;  Dong, Wei;  Ho, Simon Y. W.;  Liu, Xing;  Song, Aixia;  Chen, Junhao;  Guo, Wenlei;  Wang, Zhengjia;  Zhuang, Yingyu;  Wang, Haifeng;  Chen, Xuequn;  Hu, Juan;  Liu, Yanhui;  Qin, Yuan;  Wang, Kai;  Dong, Shanshan;  Liu, Yang;  Zhang, Shouzhou;  Yu, Xianxian;  Wu, Qian;  Wang, Liangsheng;  Yan, Xueqing;  Jiao, Yuannian;  Kong, Hongzhi;  Zhou, Xiaofan;  Yu, Cuiwei;  Chen, Yuchu;  Li, Fan;  Wang, Jihua;  Chen, Wei;  Chen, Xinlu;  Jia, Qidong;  Zhang, Chi;  Jiang, Yifan;  Zhang, Wanbo;  Liu, Guanhua;  Fu, Jianyu;  Chen, Feng;  Ma, Hong;  Van de Peer, Yves;  Tang, Haibao
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms(1-3). Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.


  
CRISPR screen in regulatory T cells reveals modulators of Foxp3 期刊论文
NATURE, 2020
作者:  Xu, Daqian;  Wang, Zheng;  Xia, Yan;  Shao, Fei;  Xia, Weiya;  Wei, Yongkun;  Li, Xinjian;  Qian, Xu;  Lee, Jong-Ho;  Du, Linyong;  Zheng, Yanhua;  Lv, Guishuai;  Leu, Jia-shiun;  Wang, Hongyang;  Xing, Dongming;  Liang, Tingbo;  Hung, Mien-Chie;  Lu, Zhimin
收藏  |  浏览/下载:33/0  |  提交时间:2020/07/03

Regulatory T (T-reg) cells are required to control immune responses and maintain homeostasis, but are a significant barrier to antitumour immunity(1). Conversely, T-reg instability, characterized by loss of the master transcription factor Foxp3 and acquisition of proinflammatory properties(2), can promote autoimmunity and/or facilitate more effective tumour immunity(3,4). A comprehensive understanding of the pathways that regulate Foxp3 could lead to more effective T-reg therapies for autoimmune disease and cancer. The availability of new functional genetic tools has enabled the possibility of systematic dissection of the gene regulatory programs that modulate Foxp3 expression. Here we developed a CRISPR-based pooled screening platform for phenotypes in primary mouse T-reg cells and applied this technology to perform a targeted loss-of-function screen of around 500 nuclear factors to identify gene regulatory programs that promote or disrupt Foxp3 expression. We identified several modulators of Foxp3 expression, including ubiquitin-specific peptidase 22 (Usp22) and ring finger protein 20 (Rnf20). Usp22, a member of the deubiquitination module of the SAGA chromatin-modifying complex, was revealed to be a positive regulator that stabilized Foxp3 expression  whereas the screen suggested that Rnf20, an E3 ubiquitin ligase, can serve as a negative regulator of Foxp3. T-reg-specific ablation of Usp22 in mice reduced Foxp3 protein levels and caused defects in their suppressive function that led to spontaneous autoimmunity but protected against tumour growth in multiple cancer models. Foxp3 destabilization in Usp22-deficient T-reg cells could be rescued by ablation of Rnf20, revealing a reciprocal ubiquitin switch in T-reg cells. These results reveal previously unknown modulators of Foxp3 and demonstrate a screening method that can be broadly applied to discover new targets for T-reg immunotherapies for cancer and autoimmune disease.


A CRISPR-based screening platform was used to identify previously uncharacterized genes that regulate the regulatory T cell-specific master transcription factor Foxp3, indicating that this screening method may be broadly applicable for the discovery of other genes involved in autoimmunity and immune responses to cancer.


  
Strontium isotope stratigraphy and paleomagnetic age constraints on the evolution history of coral reef islands, northern South China Sea 期刊论文
GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2020, 132 (3-4) : 803-816
作者:  Fan, Tianlai;  Yu, Kefu;  Zhao, Jianxin;  Jiang, Wei;  Xu, Shendong;  Zhang, Yu;  Wang, Rui;  Wang, Yinghui;  Feng, Yuexing;  Bian, Lizeng;  Qian, Handong;  Liao, Weihua
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
B cells and tertiary lymphoid structures promote immunotherapy response 期刊论文
NATURE, 2020, 577 (7791) : 549-+
作者:  Zhang, Liangsheng;  Chen, Fei;  Zhang, Xingtan;  Li, Zhen;  Zhao, Yiyong;  Lohaus, Rolf;  Chang, Xiaojun;  Dong, Wei;  Ho, Simon Y. W.;  Liu, Xing;  Song, Aixia;  Chen, Junhao;  Guo, Wenlei;  Wang, Zhengjia;  Zhuang, Yingyu;  Wang, Haifeng;  Chen, Xuequn;  Hu, Juan;  Liu, Yanhui;  Qin, Yuan;  Wang, Kai;  Dong, Shanshan;  Liu, Yang;  Zhang, Shouzhou;  Yu, Xianxian;  Wu, Qian;  Wang, Liangsheng;  Yan, Xueqing;  Jiao, Yuannian;  Kong, Hongzhi;  Zhou, Xiaofan;  Yu, Cuiwei;  Chen, Yuchu;  Li, Fan;  Wang, Jihua;  Chen, Wei;  Chen, Xinlu;  Jia, Qidong;  Zhang, Chi;  Jiang, Yifan;  Zhang, Wanbo;  Liu, Guanhua;  Fu, Jianyu;  Chen, Feng;  Ma, Hong;  Van de Peer, Yves;  Tang, Haibao
收藏  |  浏览/下载:41/0  |  提交时间:2020/07/03

Multiomic profiling of several cohorts of patients treated with immune checkpoint blockade highlights the presence and potential role of B cells and tertiary lymphoid structures in promoting therapy response.


Treatment with immune checkpoint blockade (ICB) has revolutionized cancer therapy. Until now, predictive biomarkers(1-10) and strategies to augment clinical response have largely focused on the T cell compartment. However, other immune subsets may also contribute to anti-tumour immunity(11-15), although these have been less well-studied in ICB treatment(16). A previously conducted neoadjuvant ICB trial in patients with melanoma showed via targeted expression profiling(17) that B cell signatures were enriched in the tumours of patients who respond to treatment versus non-responding patients. To build on this, here we performed bulk RNA sequencing and found that B cell markers were the most differentially expressed genes in the tumours of responders versus non-responders. Our findings were corroborated using a computational method (MCP-counter(18)) to estimate the immune and stromal composition in this and two other ICB-treated cohorts (patients with melanoma and renal cell carcinoma). Histological evaluation highlighted the localization of B cells within tertiary lymphoid structures. We assessed the potential functional contributions of B cells via bulk and single-cell RNA sequencing, which demonstrate clonal expansion and unique functional states of B cells in responders. Mass cytometry showed that switched memory B cells were enriched in the tumours of responders. Together, these data provide insights into the potential role of B cells and tertiary lymphoid structures in the response to ICB treatment, with implications for the development of biomarkers and therapeutic targets.


  
An Extremely Shallow M(w)4.1 Thrust Earthquake in the Eastern Sichuan Basin (China) Likely Triggered by Unloading During Infrastructure Construction 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (23) : 13775-13784
作者:  Qian, Yunyi;  Chen, Xiaofei;  Luo, Heng;  Wei, Shengji;  Wang, Teng;  Zhang, Zhenguo;  Luo, Xinyu
收藏  |  浏览/下载:8/0  |  提交时间:2020/02/17