GSTDTAP

浏览/检索结果: 共35条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
人为变暖导致北半球积雪减少 快报文章
气候变化快报,2024年第3期
作者:  董利苹
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:529/0  |  提交时间:2024/02/05
Human Influence  Northern Hemisphere  Snow Loss  Evidence  
气候变化加剧的高温促使2022年北半球干旱发生 快报文章
气候变化快报,2022年第20期
作者:  秦冰雪
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:696/0  |  提交时间:2022/10/20
High Temperature  Climate Change  Northern Hemisphere Drought  
欧洲哥白尼大气监测服务中心监测结果显示北半球极端野火二氧化碳排放量创纪录 快报文章
地球科学快报,2021年第20期
作者:  张树良
Microsoft Word(18Kb)  |  收藏  |  浏览/下载:395/1  |  提交时间:2021/10/25
Northern hemisphere  wildfires  
北半球第一个积雪的可靠估计量面世 快报文章
气候变化快报,2020年第12期
作者:  董利苹
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:411/0  |  提交时间:2020/06/19
Northern Hemisphere  snow mass  
Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018 期刊论文
NATURE, 2020, 581 (7808) : 294-+
作者:  Ibrahim, Nizar;  Maganuco, Simone;  Dal Sasso, Cristiano;  Fabbri, Matteo;  Auditore, Marco;  Bindellini, Gabriele;  Martill, David M.;  Zouhri, Samir;  Mattarelli, Diego A.;  Unwin, David M.;  Wiemann, Jasmina;  Bonadonna, Davide;  Amane, Ayoub;  Jakubczak, Juliana;  Joger, Ulrich;  Lauder, George V.;  Pierce, Stephanie E.
收藏  |  浏览/下载:15/0  |  提交时间:2020/05/25

Warming surface temperatures have driven a substantial reduction in the extent and duration of Northern Hemisphere snow cover(1-3). These changes in snow cover affect Earth'  s climate system via the surface energy budget, and influence freshwater resources across a large proportion of the Northern Hemisphere(4-6). In contrast to snow extent, reliable quantitative knowledge on seasonal snow mass and its trend is lacking(7-9). Here we use the new GlobSnow 3.0 dataset to show that the 1980-2018 annual maximum snow mass in the Northern Hemisphere was, on average, 3,062 +/- 35 billion tonnes (gigatonnes). Our quantification is for March (the month that most closely corresponds to peak snow mass), covers non-alpine regions above 40 degrees N and, crucially, includes a bias correction based on in-field snow observations. We compare our GlobSnow 3.0 estimates with three independent estimates of snow mass, each with and without the bias correction. Across the four datasets, the bias correction decreased the range from 2,433-3,380 gigatonnes (mean 2,867) to 2,846-3,062 gigatonnes (mean 2,938)-a reduction in uncertainty from 33% to 7.4%. On the basis of our bias-corrected GlobSnow 3.0 estimates, we find different continental trends over the 39-year satellite record. For example, snow mass decreased by 46 gigatonnes per decade across North America but had a negligible trend across Eurasia  both continents exhibit high regional variability. Our results enable a better estimation of the role of seasonal snow mass in Earth'  s energy, water and carbon budgets.


Applying a bias correction to a state-of-the-art dataset covering non-alpine regions of the Northern Hemisphere and to three other datasets yields a more constrained quantification of snow mass in March from 1980 to 2018.


  
Late Cretaceous neornithine from Europe illuminates the origins of crown birds 期刊论文
NATURE, 2020, 579 (7799) : 397-+
作者:  Shao, Zhengping;  Flynn, Ryan A.;  Crowe, Jennifer L.;  Zhu, Yimeng;  Liang, Jialiang;  Jiang, Wenxia;  Aryan, Fardin;  Aoude, Patrick;  Bertozzi, Carolyn R.;  Estes, Verna M.;  Lee, Brian J.;  Bhagat, Govind;  Zha, Shan;  Calo, Eliezer
收藏  |  浏览/下载:13/0  |  提交时间:2020/05/13

Our understanding of the earliest stages of crown bird evolution is hindered by an exceedingly sparse avian fossil record from the Mesozoic era. The most ancient phylogenetic divergences among crown birds are known to have occurred in the Cretaceous period(1-3), but stem-lineage representatives of the deepest subclades of crown birds-Palaeognathae (ostriches and kin), Galloanserae (landfowl and waterfowl) and Neoaves (all other extant birds)-are unknown from the Mesozoic era. As a result, key questions related to the ecology(4,5), biogeography(3,6,7) and divergence times(1,8-10) of ancestral crown birds remain unanswered. Here we report a new Mesozoic fossil that occupies a position close to the last common ancestor of Galloanserae and fills a key phylogenetic gap in the early evolutionary history of crown birds(10,11). Asteriornis maastrichtensis, gen. et sp. nov., from the Maastrichtian age of Belgium (66.8-66.7 million years ago), is represented by a nearly complete, three-dimensionally preserved skull and associated postcranial elements. The fossil represents one of the only well-supported crown birds from the Mesozoic era(12), and is the first Mesozoic crown bird with well-represented cranial remains. Asteriornis maastrichtensis exhibits a previously undocumented combination of galliform (landfowl)-like and anseriform (waterfowl)-like features, and its presence alongside a previously reported Ichthyornis-like taxon from the same locality(13) provides direct evidence of the co-occurrence of crown birds and avialan stem birds. Its occurrence in the Northern Hemisphere challenges biogeographical hypotheses of a Gondwanan origin of crown birds(3), and its relatively small size and possible littoral ecology may corroborate proposed ecological filters(4,5,9) that influenced the persistence of crown birds through the end-Cretaceous mass extinction.


A newly discovered fossil from the Cretaceous of Belgium is the oldest modern bird ever found, showing a unique combination of features and suggesting attributes shared by avian survivors of the end-Cretaceous extinction.


  
Asynchronous carbon sink saturation in African and Amazonian tropical forests 期刊论文
NATURE, 2020, 579 (7797) : 80-+
作者:  Wannes Hubau;  Simon L. Lewis;  Oliver L. Phillips;  Kofi Affum-Baffoe;  Hans Beeckman;  Aida Cuní;  -Sanchez;  Armandu K. Daniels;  Corneille E. N. Ewango;  Sophie Fauset;  Jacques M. Mukinzi;  Douglas Sheil;  Bonaventure Sonké;  Martin J. P. Sullivan;  Terry C. H. Sunderland;  Hermann Taedoumg;  Sean C. Thomas;  Lee J. T. White;  Katharine A. Abernethy;  Stephen Adu-Bredu;  Christian A. Amani;  Timothy R. Baker;  Lindsay F. Banin;  Fidè;  le Baya;  Serge K. Begne;  Amy C. Bennett;  Fabrice Benedet;  Robert Bitariho;  Yannick E. Bocko;  Pascal Boeckx;  Patrick Boundja;  Roel J. W. Brienen;  Terry Brncic;  Eric Chezeaux;  George B. Chuyong;  Connie J. Clark;  Murray Collins;  James A. Comiskey;  David A. Coomes;  Greta C. Dargie;  Thales de Haulleville;  Marie Noel Djuikouo Kamdem;  Jean-Louis Doucet;  Adriane Esquivel-Muelbert;  Ted R. Feldpausch;  Alusine Fofanah;  Ernest G. Foli;  Martin Gilpin;  Emanuel Gloor;  Christelle Gonmadje;  Sylvie Gourlet-Fleury;  Jefferson S. Hall;  Alan C. Hamilton;  David J. Harris;  Terese B. Hart;  Mireille B. N. Hockemba;  Annette Hladik;  Suspense A. Ifo;  Kathryn J. Jeffery;  Tommaso Jucker;  Emmanuel Kasongo Yakusu;  Elizabeth Kearsley;  David Kenfack;  Alexander Koch;  Miguel E. Leal;  Aurora Levesley;  Jeremy A. Lindsell;  Janvier Lisingo;  Gabriela Lopez-Gonzalez;  Jon C. Lovett;  Jean-Remy Makana;  Yadvinder Malhi;  Andrew R. Marshall;  Jim Martin;  Emanuel H. Martin;  Faustin M. Mbayu;  Vincent P. Medjibe;  Vianet Mihindou;  Edward T. A. Mitchard;  Sam Moore;  Pantaleo K. T. Munishi;  Natacha Nssi Bengone;  Lucas Ojo;  Fidè;  le Evouna Ondo;  Kelvin S.-H. Peh;  Georgia C. Pickavance;  Axel Dalberg Poulsen;  John R. Poulsen;  Lan Qie;  Jan Reitsma;  Francesco Rovero;  Michael D. Swaine;  Joey Talbot;  James Taplin;  David M. Taylor;  Duncan W. Thomas;  Benjamin Toirambe;  John Tshibamba Mukendi;  Darlington Tuagben;  Peter M. Umunay;  Geertje M. F. van der Heijden;  Hans Verbeeck;  Jason Vleminckx;  Simon Willcock;  Hannsjö;  rg Wö;  ll;  John T. Woods;  Lise Zemagho
收藏  |  浏览/下载:20/0  |  提交时间:2020/05/13

Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions(1-3). Climate-driven vegetation models typically predict that this tropical forest '  carbon sink'  will continue for decades(4,5). Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53-0.79), in contrast to the long-term decline in Amazonian forests(6). Therefore the carbon sink responses of Earth'  s two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature(7-9). Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth'  s intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass(10) reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth'  s climate.


  
Observed earlier start of the growing season from middle to high latitudes across the Northern Hemisphere snow-covered landmass for the period 2001-2014 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (3)
作者:  Chen, Xiaona;  Yang, Yaping
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
northern hemisphere  start of the growing season  SOS  climate change  satellite observations  
Palaeoclimate evidence of vulnerable permafrost during times of low sea ice 期刊论文
NATURE, 2020, 577 (7789) : 221-+
作者:  Vaks, A.;  Mason, A. J.;  Breitenbach, S. F. M.;  Kononov, A. M.;  Osinzev, A. V.;  Rosensaft, M.;  Borshevsky, A.;  Gutareva, O. S.;  Henderson, G. M.
收藏  |  浏览/下载:10/0  |  提交时间:2020/05/13

Climate change in the Arctic is occurring rapidly, and projections suggest the complete loss of summer sea ice by the middle of this century(1). The sensitivity of permanently frozen ground (permafrost) in the Northern Hemisphere to warming is less clear, and its long-term trends are harder to monitor than those of sea ice. Here we use palaeoclimate data to show that Siberian permafrost is robust to warming when Arctic sea ice is present, but vulnerable when it is absent. Uranium-lead chronology of carbonate deposits (speleothems) in a Siberian cave located at the southern edge of continuous permafrost reveals periods in which the overlying ground was not permanently frozen. The speleothem record starts 1.5 million years ago (Ma), a time when greater equator-to-pole heat transport led to a warmer Northern Hemisphere(2). The growth of the speleothems indicates that permafrost at the cave site was absent at that time, becoming more frequent from about 1.35 Ma, as the Northern Hemisphere cooled, and permanent after about 0.4 Ma. This history mirrors that of year-round sea ice in the Arctic Ocean, which was largely absent before about 0.4 Ma (ref.(3)), but continuously present since that date. The robustness of permafrost when sea ice is present, as well as the increased permafrost vulnerability when sea ice is absent, can be explained by changes in both heat and moisture transport. Reduced sea ice may contribute to warming of Arctic air(4-6), which can lead to warming far inland(7). Open Arctic waters also increase the source of moisture and increase autumn snowfall over Siberia, insulating the ground from low winter temperatures(8-10). These processes explain the relationship between an ice-free Arctic and permafrost thawing before 0.4 Ma. If these processes continue during modern climate change, future loss of summer Arctic sea ice will accelerate the thawing of Siberian permafrost.


  
Northern Hemisphere land monsoon precipitation changes in the twentieth century revealed by multiple reanalysis datasets 期刊论文
CLIMATE DYNAMICS, 2019, 53 (11) : 7131-7149
作者:  Huang, Xin;  Zhou, Tianjun;  Zhang, Wenxia;  Jiang, Jie;  Li, Puxi;  Zhao, Yin
收藏  |  浏览/下载:8/0  |  提交时间:2020/02/17
Northern Hemisphere land monsoon rainfall  Long-term changes  Reanalysis data  Moisture budget analysis