GSTDTAP

浏览/检索结果: 共33条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Depth-dependent drivers of soil microbial necromass carbon across Tibetan alpine grasslands 期刊论文
Global Change Biology, 2021
作者:  Mei He;  Kai Fang;  Leiyi Chen;  Xuehui Feng;  Shuqi Qin;  Dan Kou;  Hongbo He;  Chao Liang;  Yuanhe Yang
收藏  |  浏览/下载:12/0  |  提交时间:2021/11/23
Echolocation in soft-furred tree mice 期刊论文
Science, 2021
作者:  Kai He;  Qi Liu;  Dong-Ming Xu;  Fei-Yan Qi;  Jing Bai;  Shui-Wang He;  Peng Chen;  Xin Zhou;  Wan-Zhi Cai;  Zhong-Zheng Chen;  Zhen Liu;  Xue-Long Jiang;  Peng Shi
收藏  |  浏览/下载:11/0  |  提交时间:2021/06/24
Data‐driven estimates of global litter production imply slower vegetation carbon turnover 期刊论文
Global Change Biology, 2021
作者:  Yue He;  Xuhui Wang;  Kai Wang;  Shuchang Tang;  Hao Xu;  Anping Chen;  Philippe Ciais;  Xiangyi Li;  Josep Peñ;  uelas;  Shilong Piao
收藏  |  浏览/下载:10/0  |  提交时间:2021/02/17
Stimulation of soil respiration by elevated CO2 is enhanced under nitrogen limitation in a decade-long grassland study 期刊论文
Proceedings of the National Academy of Sciences, 2020
作者:  Qun Gao;  Gangsheng Wang;  Kai Xue;  Yunfeng Yang;  Jianping Xie;  Hao Yu;  Shijie Bai;  Feifei Liu;  Zhili He;  Daliang Ning;  Sarah E. Hobbie;  Peter B. Reich;  Jizhong Zhou
收藏  |  浏览/下载:11/0  |  提交时间:2020/12/22
Efficient vertical transport of black carbon in the planetary boundary layer 期刊论文
Geophysical Research Letters, 2020
作者:  Dantong Liu;  Kang Hu;  Delong Zhao;  Shuo Ding;  Yunfei Wu;  Chang Zhou;  Chenjie Yu;  Ping Tian;  Quan Liu;  Kai Bi;  Yangzhou Wu;  Bo Hu;  Dongsheng Ji;  Shaofei Kong;  Bin Ouyang;  Hui He;  Mengyu Huang;  Deping Ding
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/14
Causes of slowing‐down seasonal CO2 amplitude at Mauna Loa 期刊论文
Global Change Biology, 2020
作者:  Kai Wang;  Yilong Wang;  Xuhui Wang;  Yue He;  Xiangyi Li;  Ralph F. Keeling;  Philippe Ciais;  Martin Heimann;  Shushi Peng;  Fré;  ;  ric Chevallier;  Pierre Friedlingstein;  Stephen Sitch;  Wolfgang Buermann;  Vivek K. Arora;  Vanessa Haverd;  Atul K. Jain;  Etsushi Kato;  Sebastian Lienert;  Danica Lombardozzi;  Julia E. M. S. Nabel;  Benjamin Poulter;  Nicolas Vuichard;  Andy Wiltshire;  Ning Zeng;  Dan Zhu;  Shilong Piao
收藏  |  浏览/下载:11/0  |  提交时间:2020/06/22
Modeling leaf senescence of deciduous tree species in Europe 期刊论文
Global Change Biology, 2020
作者:  Qiang Liu;  Shilong Piao;  Matteo Campioli;  Mengdi Gao;  Yongshuo H. Fu;  Kai Wang;  Yue He;  Xiangyi Li;  Ivan A. Janssens
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/20
Structure of nevanimibe-bound tetrameric human ACAT1 期刊论文
NATURE, 2020, 581 (7808) : 339-U214
作者:  Ma, Xiyu;  Claus, Lucas A. N.;  Leslie, Michelle E.;  Tao, Kai;  Wu, Zhiping;  Liu, Jun;  Yu, Xiao;  Li, Bo;  Zhou, Jinggeng;  Savatin, Daniel V.;  Peng, Junmin;  Tyler, Brett M.;  Heese, Antje;  Russinova, Eugenia;  He, Ping;  Shan, Libo
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

The structure of human ACAT1 in complex with the inhibitor nevanimibe is resolved by cryo-electron microscopy.


Cholesterol is an essential component of mammalian cell membranes, constituting up to 50% of plasma membrane lipids. By contrast, it accounts for only 5% of lipids in the endoplasmic reticulum (ER)(1). The ER enzyme sterol O-acyltransferase 1 (also named acyl-coenzyme A:cholesterol acyltransferase, ACAT1) transfers a long-chain fatty acid to cholesterol to form cholesteryl esters that coalesce into cytosolic lipid droplets. Under conditions of cholesterol overload, ACAT1 maintains the low cholesterol concentration of the ER and thereby has an essential role in cholesterol homeostasis(2,3). ACAT1 has also been implicated in Alzheimer'  s disease(4), atherosclerosis(5) and cancers(6). Here we report a cryo-electron microscopy structure of human ACAT1 in complex with nevanimibe(7), an inhibitor that is in clinical trials for the treatment of congenital adrenal hyperplasia. The ACAT1 holoenzyme is a tetramer that consists of two homodimers. Each monomer contains nine transmembrane helices (TMs), six of which (TM4-TM9) form a cavity that accommodates nevanimibe and an endogenous acyl-coenzyme A. This cavity also contains a histidine that has previously been identified as essential for catalytic activity(8). Our structural data and biochemical analyses provide a physical model to explain the process of cholesterol esterification, as well as details of the interaction between nevanimibe and ACAT1, which may help to accelerate the development of ACAT1 inhibitors to treat related diseases.


  
A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by T-reg cells 期刊论文
NATURE, 2020
作者:  Ma, Xiyu;  Claus, Lucas A. N.;  Leslie, Michelle E.;  Tao, Kai;  Wu, Zhiping;  Liu, Jun;  Yu, Xiao;  Li, Bo;  Zhou, Jinggeng;  Savatin, Daniel V.;  Peng, Junmin;  Tyler, Brett M.;  Heese, Antje;  Russinova, Eugenia;  He, Ping;  Shan, Libo
收藏  |  浏览/下载:38/0  |  提交时间:2020/07/03

Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers(1). The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.5(2-7) contains a distal enhancer that is functional in CD4(+) regulatory T (T-reg) cells and required for T-reg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-kappa B to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3(+) T-reg cells, which are unable to control colitis in a cell-transfer model of the disease. In human T-reg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.


Shared synteny guides loss-of-function analysis of human enhancer homologues in mice, identifying a distal enhancer at the autoimmune and allergic disease risk locus at chromosome 11q13.5 whose function in regulatory T cells provides a mechanistic basis for its role in disease.


  
The Discharge Preceding the Intense Reillumination in Positive Leader Steps Under the Slow Varying Ambient Electric Field 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (3)
作者:  Huang, Shengxin;  Chen, Weijiang;  Pei, Zhehao;  Fu, Zhong;  Wang, Liufang;  He, Tianyu;  Li, Zhijun;  Gu, Jianwei;  Bian, Kai;  Xiang, Nianwen;  Wang, Yu
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02