GSTDTAP

浏览/检索结果: 共14条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
美研究揭示保护碳和社区免受林火影响的机会热点地区 快报文章
气候变化快报,2023年第19期
作者:  裴惠娟
Microsoft Word(11Kb)  |  收藏  |  浏览/下载:498/0  |  提交时间:2023/10/05
Identifying  Opportunity Hot Spots  Reducing the Risk of Wildfire-Caused Carbon Loss  in Western US Conifer Forests  
A GPR174-CCL21 module imparts sexual dimorphism to humoral immunity 期刊论文
NATURE, 2020, 577 (7790) : 416-+
作者:  Morley, Jessica;  Cowls, Josh;  Taddeo, Mariarosaria;  Floridi, Luciano
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

Humoral immune responses to immunization and infection and susceptibilities to antibody-mediated autoimmunity are generally lower in males(1-3). However, the mechanisms underlying such sexual dimorphism are not well understood. Here we show that there are intrinsic differences between the B cells that produce germinal centres in male and female mice. We find that antigen-activated male B cells do not position themselves as efficiently as female B cells in the centre of follicles in secondary lymphoid organs, in which germinal centres normally develop. Moreover, GPR174-an X-chromosome-encoded G-protein-coupled receptor-suppresses the formation of germinal centres in male, but not female, mice. This effect is intrinsic to B cells, and correlates with the GPR174-enhanced positioning of B cells towards the T-cell-B-cell border of follicles, and the distraction of male, but not female, B cells from S1PR2-driven follicle-centre localization. Biochemical fractionation of conditioned media that induce B-cell migration in a GPR174-dependent manner identifies CCL21 as a GPR174 ligand. In response to CCL21, GPR174 triggers a calcium flux and preferentially induces the migration of male B cells  GPR174 also becomes associated with more G alpha i protein in male than in female B cells. Male B cells from orchidectomized mice exhibit impaired GPR174-mediated migration to CCL21, and testosterone treatment rescues this defect. Female B cells from testosterone-treated mice exhibit male-like GPR174-G alpha i association and GPR174-mediated migration. Deleting GPR174 from male B cells causes more efficient positioning towards the follicular centre, the formation of more germinal centres and an increased susceptibility to B-cell-dependent experimental autoimmune encephalomyelitis. By identifying GPR174 as a receptor for CCL21 and demonstrating its sex-dependent control of B-cell positioning and participation in germinal centres, we have revealed a mechanism by which B-cell physiology is fine-tuned to impart sexual dimorphism to humoral immunity.


  
Insights into variation in meiosis from 31,228 human sperm genomes 期刊论文
NATURE, 2020, 583 (7815) : 259-+
作者:  Sakai, Akito;  Minami, Susumu;  Koretsune, Takashi;  Chen, Taishi;  Higo, Tomoya;  Wang, Yangming;  Nomoto, Takuya;  Hirayama, Motoaki;  Miwa, Shinji;  Nishio-Hamane, Daisuke;  Ishii, Fumiyuki;  Arita, Ryotaro;  Nakatsuji, Satoru
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03

Meiosis, although essential for reproduction, is also variable and error-prone: rates of chromosome crossover vary among gametes, between the sexes, and among humans of the same sex, and chromosome missegregation leads to abnormal chromosome numbers (aneuploidy)(1-8). To study diverse meiotic outcomes and how they covary across chromosomes, gametes and humans, we developed Sperm-seq, a way of simultaneously analysing the genomes of thousands of individual sperm. Here we analyse the genomes of 31,228 human gametes from 20 sperm donors, identifying 813,122 crossovers and 787 aneuploid chromosomes. Sperm donors had aneuploidy rates ranging from 0.01 to 0.05 aneuploidies per gamete  crossovers partially protected chromosomes from nondisjunction at the meiosis I cell division. Some chromosomes and donors underwent more-frequent nondisjunction during meiosis I, and others showed more meiosis II segregation failures. Sperm genomes also manifested manygenomic anomalies that could not be explained by simple nondisjunction. Diverse recombination phenotypes-from crossover rates to crossover location and separation, a measure of crossover interference-covaried strongly across individuals and cells. Our results can be incorporated with earlier observations into a unified model in which a core mechanism, the variable physical compaction of meiotic chromosomes, generates interindividual and cell-to-cell variation in diverse meiotic phenotypes.


  
A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by T-reg cells 期刊论文
NATURE, 2020
作者:  Ma, Xiyu;  Claus, Lucas A. N.;  Leslie, Michelle E.;  Tao, Kai;  Wu, Zhiping;  Liu, Jun;  Yu, Xiao;  Li, Bo;  Zhou, Jinggeng;  Savatin, Daniel V.;  Peng, Junmin;  Tyler, Brett M.;  Heese, Antje;  Russinova, Eugenia;  He, Ping;  Shan, Libo
收藏  |  浏览/下载:38/0  |  提交时间:2020/07/03

Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers(1). The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.5(2-7) contains a distal enhancer that is functional in CD4(+) regulatory T (T-reg) cells and required for T-reg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-kappa B to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3(+) T-reg cells, which are unable to control colitis in a cell-transfer model of the disease. In human T-reg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.


Shared synteny guides loss-of-function analysis of human enhancer homologues in mice, identifying a distal enhancer at the autoimmune and allergic disease risk locus at chromosome 11q13.5 whose function in regulatory T cells provides a mechanistic basis for its role in disease.


  
Brain control of humoral immune responses amenable to behavioural modulation 期刊论文
NATURE, 2020, 581 (7807)
作者:  Yang, C. H.;  Leon, R. C. C.;  Hwang, J. C. C.;  Saraiva, A.;  Tanttu, T.;  Huang, W.;  Lemyre, J. Camirand;  Chan, K. W.;  Tan, K. Y.;  Hudson, F. E.;  Itoh, K. M.;  Morello, A.;  Pioro-Ladriere, M.;  Laucht, A.;  Dzurak, A. S.
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

It has been speculated that brain activities might directly control adaptive immune responses in lymphoid organs, although there is little evidence for this. Here we show that splenic denervation in mice specifically compromises the formation of plasma cells during a T cell-dependent but not T cell-independent immune response. Splenic nerve activity enhances plasma cell production in a manner that requires B-cell responsiveness to acetylcholine mediated by the alpha 9 nicotinic receptor, and T cells that express choline acetyl transferase(1,2) probably act as a relay between the noradrenergic nerve and acetylcholine-responding B cells. We show that neurons in the central nucleus of the amygdala (CeA) and the paraventricular nucleus (PVN) that express corticotropin-releasing hormone (CRH) are connected to the splenic nerve  ablation or pharmacogenetic inhibition of these neurons reduces plasma cell formation, whereas pharmacogenetic activation of these neurons increases plasma cell abundance after immunization. In a newly developed behaviour regimen, mice are made to stand on an elevated platform, leading to activation of CeA and PVN CRH neurons and increased plasma cell formation. In immunized mice, the elevated platform regimen induces an increase in antigen-specific IgG antibodies in a manner that depends on CRH neurons in the CeA and PVN, an intact splenic nerve, and B cell expression of the alpha 9 acetylcholine receptor. By identifying a specific brain-spleen neural connection that autonomically enhances humoral responses and demonstrating immune stimulation by a bodily behaviour, our study reveals brain control of adaptive immunity and suggests the possibility to enhance immunocompetency by behavioural intervention.


Neuronal activities in the central amygdala and paraventricular nucleus are transmitted via the splenic nerve to increase plasma cell formation after immunization, and this process can be behaviourally enhanced in mice.


  
C9orf72 suppresses systemic and neural inflammation induced by gut bacteria 期刊论文
NATURE, 2020
作者:  Nikoo, Mohammad Samizadeh;  Jafari, Armin;  Perera, Nirmana;  Zhu, Minghua;  Santoruvo, Giovanni;  Matioli, Elison
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

A hexanucleotide-repeat expansion in C9ORF72 is the most common genetic variant that contributes to amyotrophic lateral sclerosis and frontotemporal dementia(1,2). The C9ORF72 mutation acts through gain- and loss-of-function mechanisms to induce pathways that are implicated in neural degeneration(3-9). The expansion is transcribed into a long repetitive RNA, which negatively sequesters RNA-binding proteins(5) before its non-canonical translation into neural-toxic dipeptide proteins(3,4). The failure of RNA polymerase to read through the mutation also reduces the abundance of the endogenous C9ORF72 gene product, which functions in endolysosomal pathways and suppresses systemic and neural inflammation(6-9). Notably, the effects of the repeat expansion act with incomplete penetrance in families with a high prevalence of amyotrophic lateral sclerosis or frontotemporal dementia, indicating that either genetic or environmental factors modify the risk of disease for each individual. Identifying disease modifiers is of considerable translational interest, as it could suggest strategies to diminish the risk of developing amyotrophic lateral sclerosis or frontotemporal dementia, or to slow progression. Here we report that an environment with reduced abundance of immune-stimulating bacteria(10,11) protects C9orf72-mutant mice from premature mortality and significantly ameliorates their underlying systemic inflammation and autoimmunity. Consistent with C9orf72 functioning to prevent microbiota from inducing a pathological inflammatory response, we found that reducing the microbial burden in mutant mice with broad spectrum antibiotics-as well as transplanting gut microflora from a protective environment-attenuated inflammatory phenotypes, even after their onset. Our studies provide further evidence that the microbial composition of our gut has an important role in brain health and can interact in surprising ways with well-known genetic risk factors for disorders of the nervous system.


Reduced abundance of immune-stimulating gut bacteria ameliorated the inflammatory and autoimmune phenotypes of mice with mutations in C9orf72, which in the human orthologue are linked to amyotrophic lateral sclerosis and frontotemporal dementia.


  
Structure of M-pro from SARS-CoV-2 and discovery of its inhibitors 期刊论文
NATURE, 2020, 582 (7811) : 289-+
作者:  Li, Nan;  Jasanoff, Alan
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

A programme of structure-assisted drug design and high-throughput screening identifies six compounds that inhibit the main protease of SARS-CoV-2, demonstrating the ability of this strategy to isolate drug leads with clinical potential.


A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the aetiological agent responsible for the 2019-2020 viral pneumonia outbreak of coronavirus disease 2019 (COVID-19)(1-4). Currently, there are no targeted therapeutic agents for the treatment of this disease, and effective treatment options remain very limited. Here we describe the results of a programme that aimed to rapidly discover lead compounds for clinical use, by combining structure-assisted drug design, virtual drug screening and high-throughput screening. This programme focused on identifying drug leads that target main protease (M-pro) of SARS-CoV-2: M-pro is a key enzyme of coronaviruses and has a pivotal role in mediating viral replication and transcription, making it an attractive drug target for SARS-CoV-2(5,6). We identified a mechanism-based inhibitor (N3) by computer-aided drug design, and then determined the crystal structure of M-pro of SARS-CoV-2 in complex with this compound. Through a combination of structure-based virtual and high-throughput screening, we assayed more than 10,000 compounds-including approved drugs, drug candidates in clinical trials and other pharmacologically active compounds-as inhibitors of M-pro. Six of these compounds inhibited M-pro, showing half-maximal inhibitory concentration values that ranged from 0.67 to 21.4 mu M. One of these compounds (ebselen) also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of our screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases for which no specific drugs or vaccines are available.


  
Very regular high-frequency pulsation modes in young intermediate-mass stars 期刊论文
NATURE, 2020, 581 (7807) : 147-+
作者:  Zhao, Chuangqi;  Zhang, Pengchao;  Zhou, Jiajia;  Qi, Shuanhu;  Yamauchi, Yoshihiro;  Shi, Ruirui;  Fang, Ruochen;  Ishida, Yasuhiro;  Wang, Shutao;  Tomsia, Antoni P.;  Jiang, Lei;  Liu, Mingjie
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Asteroseismology probes the internal structures of stars by using their natural pulsation frequencies(1). It relies on identifying sequences of pulsation modes that can be compared with theoretical models, which has been done successfully for many classes of pulsators, including low-mass solar-type stars(2), red giants(3), high-mass stars(4) and white dwarfs(5). However, a large group of pulsating stars of intermediate mass-the so-called delta Scuti stars-have rich pulsation spectra for which systematic mode identification has not hitherto been possible(6,7). This arises because only a seemingly random subset of possible modes are excited and because rapid rotation tends to spoil regular patterns(8-10). Here we report the detection of remarkably regular sequences of high-frequency pulsation modes in 60 intermediate-mass main-sequence stars, which enables definitive mode identification. The space motions of some of these stars indicate that they are members of known associations of young stars, as confirmed by modelling of their pulsation spectra.


The pulsation spectra of intermediate-mass stars (so-called delta Scuti stars) have been challenging to analyse, but new observations of 60 such stars reveal remarkably regular sequences of high-frequency pulsation modes.


  
Two-dimensional halide perovskite lateral epitaxial heterostructures 期刊论文
NATURE, 2020, 580 (7805) : 614-+
作者:  Cabrita, Rita;  Lauss, Martin;  Sanna, Adriana;  Donia, Marco;  Larsen, Mathilde;  Mitra, Shamik;  Johansson, Iva;  Phung, Bengt;  Harbst, Katja;  Vallon-Christersson, Johan;  van Schoiack, Alison;  Lovgren, Kristina;  Warren, Sarah;  Jirstrom, Karin;  Olsson, Hakan;  Pietras, Kristian;  Ingvar, Christian;  Isaksson, Karolin
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03

Epitaxial heterostructures based on oxide perovskites and III-V, II-VI and transition metal dichalcogenide semiconductors form the foundation of modern electronics and optoelectronics(1-7). Halide perovskites-an emerging family of tunable semiconductors with desirable properties-are attractive for applications such as solution-processed solar cells, light-emitting diodes, detectors and lasers(8-15). Their inherently soft crystal lattice allows greater tolerance to lattice mismatch, making them promising for heterostructure formation and semiconductor integration(16,17). Atomically sharp epitaxial interfaces are necessary to improve performance and for device miniaturization. However, epitaxial growth of atomically sharp heterostructures of halide perovskites has not yet been achieved, owing to their high intrinsic ion mobility, which leads to interdiffusion and large junction widths(18-21), and owing to their poor chemical stability, which leads to decomposition of prior layers during the fabrication of subsequent layers. Therefore, understanding the origins of this instability and identifying effective approaches to suppress ion diffusion are of great importance(22-26). Here we report an effective strategy to substantially inhibit in-plane ion diffusion in two-dimensional halide perovskites by incorporating rigid pi-conjugated organic ligands. We demonstrate highly stable and tunable lateral epitaxial heterostructures, multiheterostructures and superlattices. Near-atomically sharp interfaces and epitaxial growth are revealed by low-dose aberration-corrected high-resolution transmission electron microscopy. Molecular dynamics simulations confirm the reduced heterostructure disorder and larger vacancy formation energies of the two-dimensional perovskites in the presence of conjugated ligands. These findings provide insights into the immobilization and stabilization of halide perovskite semiconductors and demonstrate a materials platform for complex and molecularly thin superlattices, devices and integrated circuits.


An epitaxial growth strategy that improves the stability of two-dimensional halide perovskites by inhibiting ion diffusion in their heterostructures using rigid pi-conjugated ligands is demonstrated, and shows near-atomically sharp interfaces.


  
A reference map of the human binary protein interactome 期刊论文
NATURE, 2020, 580 (7803) : 402-+
作者:  Fan, Chen;  Sukomon, Nattakan;  Flood, Emelie;  Rheinberger, Jan;  Allen, Toby W.;  Nimigean, Crina M.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/03

Global insights into cellular organization and genome function require comprehensive understanding of the interactome networks that mediate genotype-phenotype relationships(1,2). Here we present a human '  all-by-all'  reference interactome map of human binary protein interactions, or '  HuRI'  . With approximately 53,000 protein-protein interactions, HuRI has approximately four times as many such interactions as there are high-quality curated interactions from small-scale studies. The integration of HuRI with genome(3), transcriptome(4) and proteome(5) data enables cellular function to be studied within most physiological or pathological cellular contexts. We demonstrate the utility of HuRI in identifying the specific subcellular roles of protein-protein interactions. Inferred tissue-specific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms that might underlie tissue-specific phenotypes of Mendelian diseases. HuRI is a systematic proteome-wide reference that links genomic variation to phenotypic outcomes.