GSTDTAP

浏览/检索结果: 共30条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
OIES评述COP28公报对化石燃料未来前景的影响 快报文章
地球科学快报,2024年第2期
作者:  刘文浩
Microsoft Word(19Kb)  |  收藏  |  浏览/下载:525/0  |  提交时间:2024/01/25
COP28  fossil fuels  
能源转型委员会认为减少化石燃料的需求和供应刻不容缓 快报文章
气候变化快报,2023年第23期
作者:  秦冰雪
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:422/0  |  提交时间:2023/12/05
Fossil Fuels  Energy Transition  
国际组织指出减少化石燃料的甲烷排放对实现气候目标至关重要 快报文章
气候变化快报,2023年第20期
作者:  廖 琴
Microsoft Word(30Kb)  |  收藏  |  浏览/下载:494/0  |  提交时间:2023/10/20
Fossil Fuels  Methane Emissions  Climate Targets  
国际智库呼吁将公共资金流从化石燃料转向清洁能源 快报文章
气候变化快报,2023年第07期
作者:  刘莉娜
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:582/0  |  提交时间:2023/04/05
Paris Agreement  Public Financial Flows  Fossil Fuels  Clean Energy  
欧盟创新基金资助30亿欧元用于大型创新清洁技术项目 快报文章
气候变化快报,2022年第22期
作者:  王田宇 刘燕飞
Microsoft Word(13Kb)  |  收藏  |  浏览/下载:638/0  |  提交时间:2022/11/20
European Commission  clean tech projects  fossil fuels  
首个全球化石燃料公共数据库正式上线 快报文章
地球科学快报,2022年第20期
作者:  张树良
Microsoft Word(18Kb)  |  收藏  |  浏览/下载:610/0  |  提交时间:2022/10/24
Global Registry of Fossil Fuels  public database  fossil fuel  carbon emission  
欧盟提出REPowerEU计划以减少对俄能源依赖 快报文章
气候变化快报,2022年第11期
作者:  刘燕飞
Microsoft Word(19Kb)  |  收藏  |  浏览/下载:733/0  |  提交时间:2022/06/05
Fossil Fuels  Energy Plan  Russia  
1.5 ℃目标需严格限制化石燃料开采 快报文章
气候变化快报,2021年第19期
作者:  秦冰雪
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:725/0  |  提交时间:2021/10/06
Fossil Fuels  Energy System  1.5℃ Carbon Budget  
Accelerated discovery of CO2 electrocatalysts using active machine learning 期刊论文
NATURE, 2020, 581 (7807) : 178-+
作者:  Lan, Jun;  Ge, Jiwan;  Yu, Jinfang;  Shan, Sisi;  Zhou, Huan;  Fan, Shilong;  Zhang, Qi;  Shi, Xuanling;  Wang, Qisheng;  Zhang, Linqi;  Wang, Xinquan
收藏  |  浏览/下载:88/0  |  提交时间:2020/07/03

The rapid increase in global energy demand and the need to replace carbon dioxide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemical storage of intermittent solar and wind energy(1,2). Particularly attractive is the electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and renewable energy(3-8). Copper has been the predominant electrocatalyst for this reaction when aiming for more valuable multi-carbon products(9-16), and process improvements have been particularly notable when targeting ethylene. However, the energy efficiency and productivity (current density) achieved so far still fall below the values required to produce ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identified using density functional theory calculations in combination with active machine learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion efficiency of 55 +/- 2 per cent at 150 milliamperes per square centimetre. We perform computational studies that suggest that the Cu-Al alloys provide multiple sites and surface orientations with near-optimal CO binding for both efficient and selective CO2 reduction(17). Furthermore, in situ X-ray absorption measurements reveal that Cu and Al enable a favourable Cu coordination environment that enhances C-C dimerization. These findings illustrate the value of computation and machine learning in guiding the experimental exploration of multi-metallic systems that go beyond the limitations of conventional single-metal electrocatalysts.


  
Preindustrial (CH4)-C-14 indicates greater anthropogenic fossil CH4 emissions 期刊论文
NATURE, 2020, 578 (7795) : 409-+
作者:  Keener, Megan;  Hunt, Camden;  Carroll, Timothy G.;  Kampel, Vladimir;  Dobrovetsky, Roman;  Hayton, Trevor W.;  Menard, Gabriel
收藏  |  浏览/下载:25/0  |  提交时间:2020/05/13

Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era(1). Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate(2,3). Carbon-14 in CH4 ((CH4)-C-14) can be used to distinguish between fossil (C-14-free) CH4 emissions and contemporaneous biogenic sources  however, poorly constrained direct (CH4)-C-14 emissions from nuclear reactors have complicated this approach since the middle of the 20th century(4,5). Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year)(2,3) between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate  emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year(6,7). Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago(8), but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core (CH4)-C-14 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)-an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions(9,10).


Isotopic evidence from ice cores indicates that preindustrial-era geological methane emissions were lower than previously thought, suggesting that present-day emissions of methane from fossil fuels are underestimated.